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Abstract.—Recently, a suite of distance-based multivariate phylogenetic comparative methods has been proposed for
studying the evolution of high-dimensional traits, such as morphometric coordinates, gene expression data, and function-
valued traits. These methods allow for the statistical comparison of evolutionary rates, assessment of phylogenetic signal,
and tests of correlated high-dimensional trait evolution. Simulations reveal that distance-based comparative methods exhibit
low statistical power and high Type I error under various evolutionary scenarios. Distance-based methods are also limited to
relatively simple model specification (e.g., Brownian motion evolution) due to the lack of a likelihood function for parameter
estimation. Here I propose an alternative method for studying high-dimensional trait evolution which overcomes some of
the statistical limitations associated with distance-based methods. This framework, based on parametric bootstrapping and
maximum pseudolikelihood parameter estimation, opens up the ability to estimate alternative evolutionary models, combine
multiple evolutionary hypotheses, and potentially allow missing data and within-species variation. Simulations reveal that
pairwise composite likelihood methods demonstrate appropriate Type I error and high statistical power, thus providing
a robust framework for studying high-dimensional trait evolution. These methods are implemented in the R package
phylocurve. [Covariance; distance; evolutionary rate; function-valued trait; high-dimensional; morphometric; multivariate;
pairwise composite likelihood; phylogenetic comparative method; phylogenetic generalized least squares; phylogenetic
signal.]

Phylogenetic comparative methods provide a
framework for testing hypotheses in comparative
biology while accounting for statistical nonindepen-
dence of hierarchically related species. In recent
years, multivariate traits in the context of comparative
data have been of increasing interest, leading to the
development of multivariate extensions of phylogenetic
comparative methods (Felsenstein 1981; Hansen and
Martins 1996; Revell and Collar 2009; Bartoszek et al.
2012; Adams 2013). For certain kinds of multivariate
traits, such as coordinates of morphometric traits
(Adams 2014a–c; Adams and Felice 2014; Adams and
Collyer 2015; Denton and Adams 2015), gene expression
data (Dunn et al. 2013), and function-valued traits
(Goolsby 2015), the number of trait dimensions is
often very large relative to the number of species in
a study. Such traits, known as high-dimensional traits,
pose multiple computational and statistical challenges.
Namely, as the number of parameters to be estimated
increases for a given sample size, statistical power
decreases substantially (Adams 2014b). Additionally,
when the number of trait dimensions equals or
exceeds the number of species in a study, maximum
likelihood trait covariance matrices are non-invertible
and thus cannot be used for calculations central to most
phylogenetic comparative methods (Adams 2014b).
Finally, even assuming computational feasibility and
adequate statistical power, it may be difficult to draw
unified conclusions from individual (and potentially
conflicting) trait dimensions. For example, Adams
(2014a) considered 11 anatomical landmarks describing
head shape evolution in Plethodon salamanders, and
each landmark is composed of two dimensions (x and y

coordinates), resulting in a 22-dimensional multivariate
trait. Any individual x or y coordinate for a given
landmark conveys relatively little information about the
overall evolution of head shape. Accordingly, it may be
helpful to approach comparative analyses of such traits
with single generalized multivariate metrics rather than
multidimension-specific metrics.

Adams (2014a–c) proposed a suite of multivariate
phylogenetic comparative methods for studying high-
dimensional traits while maintaining statistical power
and providing generalized test statistics for multivariate
traits as a whole. The methods, which include
multivariate extensions of Blomberg’s K (Adams 2014a),
phylogenetic generalized least squares (PGLS) (Adams
2014b; Adams and Collyer 2015), comparisons of
evolutionary rates (Adams 2014c; Denton and Adams
2015), and phylogenetic partial least squares (Adams
and Felice 2014), avoid the problem of dealing
with non-invertible covariance matrices and can even
handle traits in which the number of dimensions far
exceeds the number of species in the study. This is
accomplished by phylogenetic transformation of the
data and subsequent distance-based (Q-mode), rather
than conventional covariance-based (R-mode), analyses.
When applied to a single univariate trait, distance-based
methods and conventional phylogenetic comparative
methods provide identical results (Adams 2014a–c).
When applied to higher dimensional traits, such as
landmark coordinates of morphometric shape data (e.g.,
leaf shape coordinates obtained from Procrustes analysis
(Chitwood et al. 2014) or function-valued traits (e.g.,
species reaction norms of a phenotypically plastic trait
(Goolsby 2015)), distance-based comparative methods fit
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a single consensus metric that attempts to capture the
variation of the entire high-dimensional trait as a whole.

Limitations of Distance-Based Comparative Methods
Despite potential advantages, the distance-based

comparative framework involves considerable
shortcomings. For one, distance-based methods
require eigen decomposition and inversion of the
phylogenetic covariance matrix, which is extremely
time-consuming and inefficient for large phylogenies.
However, distance-based (Q-mode) methods can be
equivalently expressed in a fully covariance-based
(R-mode) framework (for an in-depth comparison
of distance-based and covariance-based formulas,
see Appendix 1), thus allowing for fast linear-time
calculations and thereby reducing computational time
by up to several orders of magnitude (Appendix 2;
Figs. A1–2) (Felsenstein 1973; FitzJohn 2012; Freckleton
2012; Ho and Ané 2014).

Beyond computational issues, distance-based
methods lack a likelihood function. Accordingly,
distance-based model parameters can only be computed
using closed-form solutions. For example, the distance-
based evolutionary rate for high-dimensional traits
(Adams 2014c) is simply the arithmetic mean of
the univariate Brownian motion rate parameters,
which can be computed by averaging the mean
squared phylogenetically independent contrasts for
each trait separately (Felsenstein 1985; see Appendix
1). However, parameters for many types of models
(e.g., non-Brownian evolution, missing data, within-
species variation) lack closed-form solutions and are
thus excluded from the distance-based framework.
Furthermore, model selection is limited to relatively
simple hypothesis tests, lacking any clear way to
compare complex combinations of model specifications
(e.g., simultaneous modeling of fixed effects, phenotypic
integration, rate heterogeneity, etc.). Most importantly,
distance-based methods suffer from high Type I error
and low statistical power under a variety of evolutionary
scenarios, as demonstrated in the remainder of this
article.

In this article, I propose a new method for studying
high-dimensional trait evolution which overcomes
some of the limitations associated with distance-based
methods. In the “Methods” section, I describe the
statistical properties of this method, which is based on
parametric bootstrapping (Boettiger et al. 2012), and how
it can be used to perform phylogenetic comparative tests
that are analogous to existing distance-based methods,
including statistically comparing evolutionary rates,
testing for evolutionary correlations, and evaluating
phylogenetic signal. I also introduce methods for
estimating alternative (non-Brownian) evolutionary
models, combining multiple evolutionary hypotheses,
and studying higher dimensional traits (>1000). In the
“Results” section, the statistical performance (Type I
error and statistical power) of these methods is compared

to their distance-based counterparts via simulation,
and the performance of new methods for estimating
alternative evolutionary models and higher dimensional
traits is also assessed.

METHODS

Because there is no likelihood function for distance-
based methods, a covariance-based framework is vital
to expanding the capabilities of high-dimensional
comparative methods. For multivariate phylogenetic
comparative models, the log-likelihood function is
defined as

logL(θ|Y) = −1
2

(((Y−E(Y))t(W)−1(Y−E(Y)))

+log|W|+NMlog(2�)) (1)

and the restricted log-likelihood is defined as

logL(θ|Y) = −1
2

(((Y−E(Y))t(W)−1(Y−E(Y)))+log|W|
+log|Xt(W)−1X|+(NM−M)log(2�)) (2)

where N is the number of species, M is the number
of traits (dimensions), Y contains species values for
each trait stacked into a single NM×1 column vector,
X is an NM×M matrix consisting of ones and zeros
describing which rows and columns correspond to
elements of Y (Xij =0 when i �= j and Xij =1 when i=
j), two vertical lines denotes the determinant, and W
is the species-trait covariance matrix describing the
evolutionary model (e.g., for a simple Brownian motion
model, W=R⊗C, which is the Kronecker product
of the M×M evolutionary rate matrix (R) and the
N×N phylogenetic species covariance matrix (C)).
Unfortunately, the likelihood function become unstable
as the number of traits approaches the number of species,
and is undefined when M�N. Additionally, the number
of parameters to estimate for an M×M symmetric
matrix is (M2 +M)/2, which may fail to converge on the
maximum likelihood parameters even with moderate
trait dimensionality.

Pairwise Composite Likelihood for High-Dimensional
Comparative Models

A potential solution to this dilemma is the substitution
of a pseudolikelihood metric into existing likelihood-
based estimation methods. It has been shown that
the product of the likelihoods (i.e., the sum of the
log-likelihoods) for all possible pairwise combinations
of variables, termed pairwise composite likelihood, shares
many desirable properties with the full likelihood
function. In particular, maximum pairwise composite
likelihood estimates are consistent, unbiased, and
asymptotically normal (Cox and Reid 2004; Varin
and Vidoni 2005; Fieuws and Verbeke 2006). It is
straightforward then to reduce high-dimensional
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problems into multiple small maximum likelihood
estimation problems. Specifically, for M traits,
(M2 −M)/2 pairwise models must be estimated.
Although these are a large number of models, each
individual estimation problem contains an extremely
small number of parameters that can be estimated for
each pairwise trait combination using efficient linear-
time computations (Felsenstein 1973; Freckleton 2012; Ho
and Ané 2014). Additionally, the log-likelihood function
for each pairwise trait combination is computationally
stable because N �2. For higher dimensional traits
(e.g., M>1000) in which the total number of pairwise
likelihood combinations may be computationally
prohibitive, pairwise composite log-likelihood can be
approximated using Monte Carlo sampling.

A General Framework for Hypothesis Testing and Model
Selection using Pairwise Composite Likelihoods

Here, I propose a parametric bootstrapping approach
adapted from the simulation-based methods developed
by Boettiger et al. (2012). A simulation-based approach
is essential for the proposed framework, as pairwise
likelihoods represent overlapping information (and
are, therefore, nonindependent from one another), so
pairwise composite likelihoods cannot be used for
conventional model selection criteria such as Akaike
information criterion (AIC), Bayesian information
criterion (BIC), and likelihood ratio tests (Varin
and Vidoni 2005). Similarly, standard errors of
parameter estimates based on Fisher information
matrices (which are also nonindependent among
pairwise trait combinations) are uninterpretable (Fieuws
and Verbeke 2006). To statistically compare two models,
the pairwise composite log-likelihood is calculated for
the null model (e.g., simple Brownian motion) and
for the alternative model (e.g., Brownian motion with
different rates for two groups of species, as in Adams
2014c). Next, data are simulated from the parameters
of the null model 1000 (or more) times, and pairwise
composite log-likelihoods are estimated for both the null
and alternative models (refit to the simulated data). The
likelihood ratio test statistic �=−2(logLnull −logLalt) is
computed for the observed data (�obs) and for the data
simulated under the null hypothesis (�sim.null). For a
nominal significance level of P�0.05, the critical value
for the test statistic (�∗) is set so that 95% of �sim.null
values fall under �∗. The proportion of times �obs �
�sim.null provides an approximation of the P-value for
comparing the null model to the alternative model. A
similar procedure can be applied to assess the statistical
power of a model comparison by simulating under
the alternative model many times (e.g., 1000 or more)
and calculating �sim.alt. The proportion of �sim.alt values
greater than or equal to �∗ provides an approximation of
the statistical power of the test (Boettiger et al. 2012).

This procedure is extremely flexible and maintains
appropriate Type I error and high statistical power for
the comparative methods described here. In particular,

because the likelihood ratio statistic can be calculated
for any model, complex combinations of multiple
evolutionary hypotheses (e.g., fixed effects, multiple
evolutionary rates, phylogenetic signal, etc.) may be
incorporated simultaneously, whereas hypothesis tests
for various distance-based models (which rely on
model-specific metrics, such as ratios of F−statistics or
evolutionary rates) cannot be combined.

The approach described above (as well as the methods
described in the following sections) is implemented
in the R package phylocurve, in which null and
alternative models can be fit separately using the
evo.model function and subsequently compared via
parametric bootstrapping (Boettiger et al. 2012) using
the compare.models function (R Core Team 2016).

Statistically Comparing Evolutionary Rates
Adams (2014c) proposed a distance-based method

for comparing evolutionary rates for high-dimensional
traits among a priori designated groups of species,
hereafter referred to as regimes. Comparisons of
evolutionary rates may be performed to test a variety of
questions involving the interplay between phenotypic
diversification and key factors such as morphology,
ecological niche, speciation/extinction events, and
physiology (O’Meara et al. 2006; Thomas et al.
2006; Adams 2014c). For example, to test whether
a high-dimensional character (such as leaf shape
morphometrics) evolves faster in one group of species
versus another (e.g., annuals vs. perennials), one may
test the null hypothesis of equal evolutionary rates
for all species in the phylogeny versus the alternative
hypothesis of statistically different evolutionary rates
between the two regimes. As described later in this
article, the distance-based approach to comparing
evolutionary rates suffers several statistical drawbacks.
To overcome these drawbacks, I propose an alternative
method for statistically comparing evolutionary rates
among regimes using the parametric bootstrapping
method described above.

To simulate the null hypothesis for comparing
evolutionary rates among regimes, simulate trait
evolution (e.g., using the sim.char function in geiger
(Pennell et al. 2014)) under the restricted maximum
likelihood evolutionary rate matrix (equation (A9);
for the maximum likelihood rate matrix, N−1 is
simply replaced with N). To simulate the alternative
hypothesis (distinct evolutionary rates among regimes),
the following procedure is used:

1. Estimate the evolutionary rate matrix for each
regime (Rj) using either the censored method
described in O’Meara et al. (2006), the noncensored
approach (O’Meara et al. 2006), or by subsetting
transformed residuals (Adams 2014c).

2. Determine the proportion of each tree edge to be
assigned to each respective regime rate matrix, for
instance, by assigning entire clades values of either
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FIGURE 1. Comparison of rate differences among two regimes from nine Plethodon salamanders for 11 cranial landmark coordinates
(Adams 2014c) using a) distance-based hypothesis testing while failing to account for trait covariance, as in Adams (2014c) (performed using
the phylocurve function fast.geomorph.compare.evol.rates with force.diag=FALSE), b) distance-based hypothesis testing while accounting for trait
covariance (performed using the phylocurve function fast.geomorph.compare.evol.rates with force.diag=FALSE), and c) pairwise composite likelihood-
based hypothesis testing and statistical power assessment (performed using the phylocurve function compare.models on null and alternative models
both fit using the evo.model function), where the left distribution is the null distribution (no difference in rate ratio) and the right distribution is
the alternative distribution (significant difference in rate ratio); the left vertical dotted line is the observed test statistic and the right vertical line
is the critical value for the test statistic (indicating that the observed test statistic falls within the null distribution). While failing to account for
trait covariance, the rate ratio between the two hypothesized regimes (1.84) was found to be significantly different from 1.0 (P=0.005), identical
to the result reported in Adams (2014c). While accounting for trait covariance, the rate ratio (1.84) was found to be nonsignificant (P=0.261).
Pairwise composite likelihood-based hypothesis testing was also nonsignificant (P=0.64) and revealed very little statistical power (0.097, the
proportion of simulated alternative models greater than the critical value) to detect a significant rate difference for the given the phylogeny and
data set.

zero or one (for known discrete regime shifts), or by
reconstructing the probabilities of ancestral regime
states (Yang et al. 1995; Pupko et al. 2000; Paradis
et al. 2004; Revell 2012).

3. Simulate phenotypic evolution under the
evolutionary rate matrix for each regime by
scalar multiplication of Rj (the evolutionary rate
matrix for regime j) by the branch lengths of the
phylogeny and by the regime-specific proportions
determined in (2).

4. Add the resulting simulated phenotypic values
together. Note that this procedure differs
substantially from the null hypothesis described
in Adams (2014c), which assumes a diagonal
evolutionary rate matrix and results in high Type
I error for correlated traits (see below for more
detail). In contrast, the procedure described here
results in appropriate Type I error and statistical
power to compare evolutionary rates among
regimes.

To assess statistical significance and power, compare
the pairwise composite likelihood test statistic �obs to
the null and alternative distributions. Although the raw
values of evolutionary rates themselves may be of limited
usefulness, a statistically significant rate comparison
suggests a deviation from simple Brownian motion
evolution, whereas a nonsignificant result may be the
result of either a lack of a true difference in rates or an
unidentifiable signal. The degree of overlap in the null
and alternative distributions and the relative positions
of �obs and �∗ can help distinguish whether the test

was adequately powered to detect shifts in evolutionary
rates, or if the null and alternative hypotheses were
statistically indistinguishable (see Fig. 1c)

Denton and Adams (2015) also described a method
for statistically comparing evolutionary rates among two
high-dimensional traits, which may be used to test a
variety of questions regarding phenotypic evolution and
modularity. For example, one may test the hypothesis
that leaf shape evolution is slower among leaves
produced during the plant seedling stage than for
leaves produced during plant maturity. To simulate
the null hypothesis under this scenario, construct a
modified evolutionary rate matrix in which the diagonal
of R is constrained to equal �2

mult (the mean of the
diagonal of the evolutionary rate matrix R). For the
alternative hypothesis, the diagonal of R is divided into
trait groups subsets, in which subset k is set to equal
�2

trait.subk
(the mean of the diagonal of the subset of

R corresponding to traits represented in trait group
k). �obs is then statistically compared to the null and
alternative distributions. In many cases, the resulting
matrix is not positive semidefinite. Following Denton
and Adams (2015), the nearest positive definite matrix
to the constrained rate matrix is found using the nearPD
function in the Matrix package for trait simulations
(Bates and Maechler 2015). As with comparisons of
evolutionary rates among regimes, the raw values of
evolutionary rates for individual traits may not be
particularly meaningful, whereas the relative difference
in rates and the statistical significance of the test
may corroborate or contradict existing explanations for
observed phenotypic patterns. However, it is important
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to note that the reliability of this test depends strongly
on the appropriateness of the null hypothesis of equal
rates. For example, comparisons of traits measured in
different units (e.g., mm and cm) or comparisons of
non-analogous traits (e.g., morphometrics and function-
valued traits) are inappropriate, as there would be
no reasonable expectation of equally scaled rates of
evolution among traits.

Testing for Evolutionary Correlations
Adams (2014b) described a distance-based method

for testing the significance of evolutionary correlations
between fixed effects (e.g., univariate environmental
variables) and high-dimensional traits in a multivariate
extension of evolutionary regression called D-PGLS.
As with univariate evolutionary regression (i.e., PGLS
or phylogenetically independent contrasts regressed
through the origin), D-PGLS is intended to test for
the significance of correlations between one or more
predictor variables and a response variable (here a high-
dimensional trait). However, as with other distance-
based methods described in this article, distance-based
D−PGLS performs poorly under certain scenarios, and
an alternative method using parametric bootstrapping
is described here. To test the significance of fixed
effects (as in D-PGLS (Adams 2014b)), simulate both
the null and alternative hypotheses under R, and
add X� (equation (A8)) to the simulated Y under the
alternative hypothesis. It should be noted that restricted
likelihood (or restricted pairwise composite likelihood)
cannot be used for model comparisons in which
fixed effects differ between the null and alternative
hypotheses. Instead, comparisons of �obs with the
null and alternative distributions must be made using
maximum pairwise composite likelihood estimates, and
a significant result suggests an evolutionarily conserved
relationship between one or more predictor variables
and the multivariate response trait.

Adams and Felice (2014) described a method
for assessing correlated evolution among two high-
dimensional traits (termed phylogenetic partial least
squares). This is conceptually similar to phylogenetic
regression, except that both variables are multivariate.
For example, one could test whether the evolution of leaf
shape is evolutionarily correlated with the evolution of
species reaction norms. However, phylogenetic partial
least squares suffers severely elevated Type I error
when within-trait covariance is low (see below), so
an analogous framework which avoids these issues
is described here. To assess correlations between two
sets of multivariate traits in the pairwise composite
likelihood framework, estimate the evolutionary rate
matrix R (equation (A9)) and partition R into four blocks
(R11, R21, R12, R22—see equation (A10)) (Adams and
Felice 2014; see also Revell and Harrison 2008). Rather
than performing singular value decomposition on the
evolutionary rate matrix as in Adams and Felice (2014),
simulate the null hypothesis by setting all elements

of blocks R12 and R21 to zero. For the alternative
hypothesis, simulate data under the unconstrained
rate matrix (R), and compare �obs to the null and
alternative distributions to assess statistical significance.
A significant result indicates evolutionarily correlated
changes between the two multivariate traits, known as
phenotypic integration. In a similar manner, the presence
of significant evolutionary covariation among traits can
be tested by setting non-diagonal elements of the rate
matrix to zero for null hypothesis simulations.

Phylogenetic Signal
Adams (2014a) introduced a distance-based extension

of Blomberg’s K(Blomberg et al. 2003) for testing
phylogenetic signal for high-dimensional traits. The
parametric bootstrapping framework described here
can also be used to test for phylogenetic signal
in high-dimensional traits. Rather than phylogenetic
permutation (as in Blomberg et al. 2003 and Adams
2014a), I propose the use of phylogenetic simulation
for both the null and alternative hypotheses. Under
Blomberg’s K, the null hypothesis is an absence of
phylogenetic signal, so data are simulated under R on a
star phylogeny; for the alternative hypothesis (Brownian
motion), data are simulated under R on the original
phylogeny. For this procedure, K is used as the summary
statistic (rather than the likelihood ratio �). The null
distribution of K is used to calculate the critical value
(K∗), and the proportion of Kobs �Ksim.null is the P-
value for the test of phylogenetic signal. The mean of
Ksim.alt provides the expectation of K under Brownian
motion (which should be approximately 1.0 if the model
is correctly specified), and the proportion of Ksim.alt �K∗
provides an estimate of the statistical power to detect
significant phylogenetic signal. To simplify calculations
under complex evolutionary models, the expectation of
the ratio of raw to phylogenetic mean squared error
(the denominator of Kmult) can be approximated by
simulation under the alternative hypothesis (see below).
This implementation of Kmult is implemented in the
phylocurve function K.mult.

Estimation of Alternative Evolutionary Models
Parameters for alternative evolutionary models, such

as Early-Burst (Harmon et al. 2010) or Ornstein–
Uhlenbeck (Hansen 1997), or tree transformations
such as Pagel’s � (Pagel 1999) can be fit to high-
dimensional comparative models by transforming the
branch lengths such that a Brownian motion-like process
of trait evolution applies on the transformed tree.
Estimation of maximum pairwise composite likelihood
tree transformation parameters proceeds as follows: (i)
transform the phylogeny according to an initial guess
for a tree transformation parameter (e.g., � for an
Ornstein–Uhlenbeck process); (ii) estimate maximum
likelihood parameters for each pairwise combination
of traits using closed-form solutions (if available) or
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by numerical optimization; (iii) sum the pairwise log-
likelihoods for each combination of traits; (iv) repeat
steps 1–3 with a new guess for the tree transformation
parameter until convergence on the maximum pairwise
composite likelihood estimate is achieved. To assess
whether the evolutionary model provides a significantly
better fit than the null model (e.g., Brownian motion),
perform parametric bootstrap simulations and compare
�obs to the null distribution, as described in the previous
sections.

Combining Multiple Evolutionary Hypotheses
The hypothesis testing framework described above

(based on Boettiger et al. 2012) allows for straightforward
combinations of multiple evolutionary hypotheses by
imposing appropriate alterations of or constraints on the
evolutionary rate matrix or by adding predicted values
based on fixed effects to simulated data (Ysim +X�). To
incorporate multiple models into tests of phylogenetic
signal, Kmult, the expectation of the ratio of raw
mean squared error to phylogenetically corrected mean
squared error

E
(
MSE0/MSE

)=E

⎛
⎜⎜⎜⎝

M∑
i=1

((
yi −E

(
yi

))t(yi −E
(
yi

)))
M∑

i=1

((
yi −E

(
yi

))tC−1
(
yi −E

(
yi

)))
⎞
⎟⎟⎟⎠
(3)

is estimated by simulation under the hypothesized
evolutionary model. Under simple Brownian motion,
this should yield an estimate of approximately
(tr(C)−N(1tC−11)−1)/(N−1) (Blomberg et al. 2003).
The observed ratio MSE0/MSE is then scaled by
E(MSE0/MSE) to calculate Kmult:

Kmult =

M∑
i=1

((
yi −E

(
yi

))t(yi −E
(
yi

)))
M∑

i=1

((
yi −E

(
yi

))tC−1
(
yi −E

(
yi

)))
E(MSE0/MSE)

(4)

Next, the hypothesized model is simulated on a
star phylogeny to obtain the null distribution of Kmult,
which is used to calculate the critical value (K∗). As
before, the proportion of Kobs �Ksim.null is the P-value
for testing phylogenetic signal, and the proportion of
Ksim.alt �K∗ provides an estimate of the statistical power
of the test. Under simple Brownian motion, equations
(A6) and (A7) should be nearly identical to equation
(4), whereas under deviations from simple Brownian
motion, equation (4) yields a generalization of Kmult
which can incorporate fixed effects (by setting E(Y)=
X�), multiple evolutionary rate regimes, non-Brownian
evolutionary models, and other model specifications.
These features are implemented in the phylocurve
function K.mult.

Incorporation of Missing Data and Within-Species
Variation

Several methods have been developed to estimate
evolutionary trait covariance in the presence of missing
data and within-species variation (Ives et al. 2007;
Felsenstein 2008; Bruggeman et al. 2009; Hansen and
Bartoszek 2012). These methods can all be estimated
in a maximum likelihood (or restricted likelihood)
framework and can be readily incorporated into
pairwise composite likelihood estimation. However,
for such methods, there is no algorithmic solution
for estimating evolutionary covariances, so step 2 of
the outlined method for parameter estimation (see
above) requires numerical optimization of covariance
parameters. Problematically, estimated evolutionary
rates for data sets with missing data or within-species
variation will be different if parameters for pairwise trait
combinations are estimated separately. One solution is to
maximize the pairwise log-likelihood for all parameters
in a single optimization routine, which constrains
variance parameters for individual traits to be identical
across pairwise combinations. This is a potentially
large optimization problem which may have difficulty
converging. A potential simplification involves separate
maximum likelihood estimation for each pairwise trait
combination (as described above), followed by averaging
each estimate of the evolutionary rate for a given
trait. The resulting estimates are not equivalent to the
maximum pairwise composite likelihood estimates but
should provide reasonable starting parameters for a
single optimization routine. Alternatively, the averaged
estimates could be used as is to approximate the
maximum pairwise composite likelihood parameters.
Optimal strategies for incorporating within-species
variation and missing data for high-dimensional
models require further investigation that is beyond
the scope of this article (but see Denton and
Adams 2015, in which a bootstrapping approach
is performed on randomly sampled within-species
individual observations). Approaches for dealing with
within-species variation and missing data are not yet (as
of the time of publication) implemented in phylocurve.

Higher-Dimensional Traits
The pairwise composite log-likelihood approach may

become excessively cumbersome for extremely high-
dimensional traits. For example, for a 1024-dimensional
trait there are 523,776 pairwise trait combinations, a
prohibitively large number for parameter estimation, as
the pairwise log-likelihood must be calculated several
times for numerical optimization. For simulation-
based hypothesis testing, this optimization procedure
must be repeated a large number of times. For
instance, supposing numerical optimization of a
tree transformation parameter (e.g., Early-Burst
rate) requires 50 log-likelihood calculations, and
1000 null hypothesis simulations are performed, a
total of 50×1000×523,776=26,188,800,000 pairwise
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log-likelihood evaluations would be required. For
such computationally infeasible problems, I propose
a simple Monte Carlo-based approach. Rather than
computing every possible pairwise log-likelihood,
randomly sample a subset of pairwise combinations,
then divide the subsetted pairwise composite log-
likelihood by the number of random samples, and
then multiply by the total number of possible pairwise
combinations. As the number of random samples
increases, the estimated composite log-likelihood will
approach the true pairwise composite log-likelihood.
Next, approximate the composite log-likelihood surface
for the tree transformation parameter by estimating
the composite log-likelihood for several parameter
values spanning the range of feasible parameters, and
then regress parameters against the approximated
log-likelihood surface (e.g., polynomial or Gaussian
process regression). Finally, identify the parameter value
corresponding to the maximum predicted value of the
regression, and use this value as the parameter estimate.
This method can be performed in the phylocurve function
evo.model by setting the argument max.combn to a value
lower than the number of pairwise trait combinations
((M2 −M)/2).

Simulation Methods
To compare the Type I error and statistical power of

distance-based methods with the pairwise composite
log-likelihood approaches described here, simulations
were performed under a variety of evolutionary
scenarios. For each scenario, 1000 data sets were
simulated on 32-species pure-birth phylogenies
using the pbtree function in phytools (Revell 2012),
and subsequently using the sim.traits and sim.groups
functions in phylocurve (both of which call the sim.char
function in geiger (Pennell et al. 2014)). Hypothesis
tests were performed using both distance-based and
pairwise composite log-likelihood-based parametric
bootstrapping simulation (Boettiger et al. 2012), with
1000 bootstrap simulations per simulated data set.

To evaluate the statistical performance of comparing
evolutionary rates among regimes, two regimes
were assigned 16 species each. For each simulation,
an evolutionary rate matrix was simulated by
parameterizing the upper triangle of an M×M matrix
drawn from the standard normal distribution. The
transpose of the matrix was then matrix multiplied by
itself, resulting in a positive-definite covariance matrix
(Rsim). For one of the simulated regimes, traits were
simulated under Rsim; the other regime was simulated
under Rsim scalar multiplied by either 1.0 (for Type I
error), 1.5, 2.0, 3.0, or 4.0. Simulations were conducted
for 2, 16, 32, and 64 traits. Similarly, the statistical
performance of comparing evolutionary rates among
traits was evaluated by generating Rsim, subdividing the
diagonal of Rsim into two groups, and setting one group
to the mean of the diagonal of Rsim and the other group
to the mean of the diagonal of Rsim multiplied by either

1.0 (for Type I error), 1.5, 2.0, 3.0, or 4.0. Simulations were
conducted for 4, 8, 16, 32, and 64 traits. For simulations
involving fixed effects (for comparison with D−PGLS),
the diagonal of R (of dimension (M+1)×(M+1)) was
set to 1.0 and off-diagonal elements were set to either
0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, or 0.9, and data
were simulated for 2, 5, 10, 25, and 32 traits. To assess
the statistical performance of testing evolutionary
covariance between two groups of multivariate traits
(for comparison with phylogenetic partial least squares),
the diagonal of R (of dimension M×M) was set to 1.0
and off-diagonal elements were set to either 0.0 (for
Type I error), 0.1, 0.3, 0.5, 0.7, or 0.9. To test the power
of multivariate phylogenetic signal (Kmult), trait data
were simulated under Rsim on a transformed phylogeny
with Pagel’s � set to either 0.0 (for Type I error), 0.05,
0.1, 0.25, 0.5, 0.75, and 1.0 for 2, 5, 10, 32, and 64 traits.
For simulations testing evolutionary covariance, traits
were simulated under R with the diagonal set to 1.0
and off-diagonal elements set to either 0.0 (for Type
I error), 0.1, 0.3, 0.5, 0.7, or 0.9 for 2, 5, 10, 32, and 64
traits.

Additionally, alternative evolutionary models were
simulated for 2, 5, 10, 25, 31, and 50 traits, and simulations
were performed on phylogenies with the following tree
transformations: Early-Burst (rate = 0.0 (for Type I error),
−0.25, −0.5, −0.75, −1.0), Ornstein–Uhlenbeck � = 0.0
(for Type I error), 0.25, 0.5, 1.0, 2.0), and Pagel’s � (� =
1.0 (for Type I error), 0.75, 0.5, 0.25, 0.0).

R code for performing the simulations used to generate
Figures 2, 3, and 4 is provided in the Dryad Supplement
available at http://dx.doi.org/10.5061/dryadfh0mc.
Several phylocurve functions beginning with
“fast.geomorph.” (fast.geomorph.compare.evol.rates, fast.
geomorph.compare.multi.evol.rates, fast.geomorph.physignal,
fast.geomorph.phylo.integration, and fast.geomorph.
procD.pgls) were developed to provide fast covariance-
based implementations of equivalent geomorph functions
(compare.evol.rates, compare.multi.evol.rates, physignal,
phylo.integration, and procD.pgls). These functions, which
produce identical results to distance-based methods,
should not be confused with the pairwise composite
likelihood framework described in this article, which
is implemented in the phylocurve functions evo.model,
compare.models, and K.mult.

RESULTS

Statistically Comparing Evolutionary Rates
For comparisons of evolutionary rates among regimes

(Fig. 2b,d) and among groups of traits (Fig. 3a–b) using
both distance-based and pairwise composite likelihood-
based hypothesis testing, all simulated scenarios
displayed appropriate Type I error (approximately 0.05).
As expected, as trait dimensionality was increased,
statistical power also increased (as in Adams (2014c)
and Denton and Adams (2015)), although distance-
based approaches exhibited somewhat higher statistical
power for rate ratios of 1.5 and 2.0 (both methods
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FIGURE 2. Statistical performance of evolutionary rate
comparisons among regimes using a) distance-based hypothesis
tests assuming a diagonal evolutionary rate matrix as was assumed
in Adams (2014c) and implemented in the geomorph function
compare.evol.rates in versions 1.1.5-2.1.5 (performed using the
fast.geomorph.compare.evol.rates function in phylocurve with
force.diag=TRUE), b) distance-based hypothesis tests assuming
a fully parameterized evolutionary rate matrix is implemented
in geomorph versions 2.1.6 and higher (performed using the
fast.geomorph.compare.evol.rates function in phylocurve with
force.diag=FALSE), c) distance-based hypothesis tests using a fully
parameterized evolutionary rate matrix with regime-specific rates
using the censored method of O’Meara et al. (2006) (performed using
the fast.geomorph.compare.evol.rates function in phylocurve with
censored=TRUE), and d) pairwise composite likelihood methods
performed using the compare.models function in phylocurve. Failing
to account for trait covariance (a) results in unacceptably high Type
I error. Simulations were performed on 1000 simulated 32-species
pure-birth phylogenies with 2, 16, 32, and 64 traits simulated under
two different regimes of equal size with a rate ratio of 1.0 (for Type I
error), 1.5, 2.0, 3.0, and 4.0.

had statistical power of approximately 1.0 at higher
rate ratios). Regime-specific evolutionary rates were also
compared using the censored method (Fig. 2c; O’Meara
et al. 2006), which displayed appropriate Type I error
and statistical power approximately identical to that of
the distance-based procedure.

It should be noted that a modification to the
null hypothesis described in Adams (2014c) was
implemented for comparing rates among regimes.
Adams (2014c) simulated the null distribution of rate
ratios by setting the null hypothesis to be a diagonal
evolutionary rate matrix, with each trait independently
evolving under a Brownian motion rate of �2

mult. Because
this approach fails to account for trait covariation,
this procedure results in unacceptably high Type I
error rates (Fig. 2a), as trait covariance artificially
inflates the observed differences among regime-specific
rates relative to independently simulated traits. This
Type I error-prone procedure was implemented in the
supplemental code provided in Adams (2014c) as well
as in the compare.evol.rates function in geomorph up to
version 2.1.5 (Adams and Otárola-Castillo 2013). As of
version 2.1.6 of geomorph, the null hypothesis has been
updated to account for trait covariance (Denton and
Adams 2015). Likewise, earlier versions of phylocurve

(1.0.0-1.3.0), which implemented fast covariance-based
analogues of distance-based approaches, also used the
original null hypothesis specified in Adams (2014c).
phylocurve versions 2.0.0 and higher implement the
modified null hypothesis incorporating trait covariance
(however, the fast.geomorph.compare.evol.rates can be
used to perform hypothesis tests under the old null
hypothesis, as described in Adams (2014c), by setting the
force.diag option to TRUE).

As an example of the potential consequences of
failing to account for trait covariation, data from Adams
(2014c) consisting of 11 cranial landmark coordinates
from 9 Plethodon salamanders were analyzed using the
phylocurve function fast.geomorph.compare.evol.rates while
assuming zero-trait covariance (force.diag set to TRUE).
When failing to account for trait covariance, the rate
ratio between the two hypothesized regimes (1.84) was
found to be significantly different from 1.0 (Fig. 1a;
P=0.005), identical to the result reported in Adams
(2014c). Next, the phylocurve function compare.models was
used to test for significant trait covariation (where the
null model was fit using evo.model with diag.phylocov
set to TRUE and the alternative model was fit using
evo.model with diag.phylocov set to FALSE). The null
hypothesis of zero trait covariation was unequivocally
rejected (P<0.001). Next, fast.geomorph.compare.evol.rates
was used while accounting for trait covariance (force.diag
set to FALSE), and the rate ratio (1.84) was found to
be nonsignificant (Fig. 1a; P=0.261), in conflict with
Adams (2014c). To simultaneously assess the statistical
significance and statistical power of the test using
pairwise composite likelihood methods, the phylocurve
function compare.models was used to compare the null
hypothesis of a single rate regime and the alternative
hypothesis of two regimes. This test, analogous to
the fast.geomorph.compare.evol.rates test accounting for
trait covariance, was also nonsignificant (P=0.64) and
revealed essentially no statistical power (0.097) to detect
a significant rate difference given the phylogeny and data
set (Fig. 1c).

Comparing Evolutionary Rates under Violations of
Distance-Based Assumptions

Distance-based comparisons of evolutionary rates
among regimes operate under the assumption that shifts
in evolutionary rates are proportional among individual
traits—that is, evolution is assumed to speed up or slow
down equally for all traits by the same factor (e.g., half,
double, quadruple, etc.). To assess the consequences
of deviations from this model, statistical power was
assessed under a scenario in which the evolutionary
rates among two clades differed substantially but in
conflicting ways. Specifically, a 100-dimensional trait
was simulated on a 32-species phylogeny divided into
two equally sized regimes. Traits 1–50 were simulated
with an evolutionary rate of 1.0 for the first regime
(species 1–16) and an evolutionary rate of 4.0 for
the second regime (species 17–32). Traits 51–100 were
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FIGURE 3. Comparisons of the statistical performance of distance-based methods (left) and pairwise composite likelihood methods (right)
for comparisons of evolutionary rates among trait groups a–b) using the geomorph function compare.multi.evol.rates and the phylocurve function
compare.models), tests of significant Kmult, c–d) using the geomorph function physignal and the phylocurve function K.mult), tests for significant
covariation with fixed effects, e–f) using the geomorph function procD.pgls and the phylocurve function compare.models, and tests for significant
covariation among two multivariate traits, g–h) using the geomorph function phylo.integration and the phylocurve function compare.models).
Comparisons of evolutionary rates (a–b) among trait groups were simulated with rate ratios 1.0 (for Type I error), 1.5, 2.0, 3.0, and 4.0 for
simulated data with 4, 8, 16, 32, and 64 traits (where subset trait groups were of size 2, 4, 8, 16, and 32, respectively). Both methods exhibited
similar statistical performance. Tests of significant phylogenetic signal (c–d) were performed using Pagel’s � tree transformations of 1.0 (for Type
I error), 0.75, 0.5, 0.25, and 0.0 on simulated data with 2, 5, 10, 32, and 64 traits. Statistical performance was similar for both methods, although
distance-based tests of phylogenetic signal (c) had higher statistical power at higher simulated levels of Pagel’s �. Multivariate phylogenetic
regression (e–f) was simulated with an input covariation among simulated data and fixed effects of 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, and 0.9
for data of trait dimension 10, 24, 50, 100, and 250. Distance-based methods (e) exhibited elevated Type I error. Tests for significant covariation
among multivariate traits (g–h) were simulated using an input covariation of 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, and 0.9 for traits of dimension
2, 4, 8, 16, 32, and 64. Distance-based phylogenetic partial least squares (g) exhibited extremely high Type I error. All simulations were performed
on 1000 simulated 32-species pure-birth phylogenies.
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simulated with an evolutionary rate of 4.0 for species
1–16 and an evolutionary rate of 1.0 for species 17–
32. Thus, the average simulated evolutionary rate for
both regimes was 2.5, but substantial rate differences
existed between regimes for each trait (where half
the traits had a rate ratio of 4.0 and the other half
had a rate ratio of 0.25). Simulations were repeated
1000 times, and the proportion of significant results
(corresponding to the statistical power of the test) was
compared for distance-based and pairwise composite
likelihood-based hypothesis testing. As demonstrated
in the previous section, Type I error is appropriate
for both methods (assuming distance-based methods
account for trait covariation). However, the statistical
power for distance-based methods was approximately
0.05, suggesting that distance-based rate comparisons
are poorly equipped to detect rate differences for the
biologically realistic scenario of heterogeneous rate
ratios. In contrast, the statistical power for pairwise
composite likelihood-based regime rates comparisons
under the described scenario was exactly 1.0.

Phylogenetic Signal
For testing the significance of multivariate

phylogenetic signal (Kmult), distance-based testing
(Adams 2014a) follows the permutation procedure
described in Blomberg et al. (2003). For the approach
described here, the null hypothesis is simulated
on a star phylogeny (see above). Results for both
approaches yielded appropriate statistical power
(Fig. 3c–d), although the simulation-based approach
exhibited decreasing Type I error as trait dimensionality
increased (0.008 for simulations with 64 traits), whereas
the distance-based maintained a Type I error of
approximately 0.05. Consistent with Type I error
findings, statistical power was very similar between the
two methods but with slightly higher statistical power
for distance-based phylogenetic permutation under high
trait dimensionality (although both methods exhibited
higher power as the number of traits increased).

Testing for Evolutionary Correlations: Comparisons with
D-PGLS

The statistical performance of testing for fixed effects
(described above) in which the null hypothesis (without
fixed effects) is compared to the alternative hypothesis
(with fixed effects) was compared to the performance
of D-PGLS. As with phylogenetic signal, D−PGLS relies
on a phylogenetic permutation testing procedure. The
simulation-based pairwise composite likelihood method
described here exhibited similar statistical power to
D-PGLS (Fig. 3e–f). However, D-PGLS exhibited high
Type I error, which increased as trait dimensionality
was increased (with Type I errors as high as 0.158).
In contrast, the simulation-based pairwise composite
likelihood method exhibited appropriate Type I error

which decreased with increasing trait dimensionality
(0.018 for simulations with 32 traits). The reason for
the high Type I error for D-PGLS in these simulations
is unknown, as D-PGLS exhibited appropriate Type I
error in Adams (2014b). One possible explanation is
the type of phylogenies generated for simulations: here,
pure-birth phylogenies were generated using the pbtree
function in phytools, but simulations using phylogenies
with random splits (using the rtree function in ape)
and branch lengths computed using Grafen’s method
(1989) (implemented in the compute.brlen function in
ape) appear to yield appropriate Type I error for D-
PGLS, suggesting a possible sensitivity of D-PGLS to tree
topology and branch lengths.

Testing for Evolutionary Correlations: Comparisons with
Phylogenetic Partial Least Squares

Simulations were performed to assess the statistical
performance of pairwise composite likelihood-based
tests for evolutionary covariance among multiple traits.
This test is analogous to phylogenetic partial least
squares, as the null hypothesis for both methods is
zero evolutionary covariance among two groups of
traits (R12 =R21 =0) and the alternative hypothesis is
R12 �=R21 �=0. As with tests for phylogenetic signal
and fixed effects, phylogenetic partial least squares
relies on phylogenetic permutation, whereas pairwise
composite likelihood-based tests use Monte Carlo
simulations. However, the results of Adams and Felice
(2014) could not be replicated for the simulations
performed here, as phylogenetic partial least squares
suffered from extremely high Type I error that was
exacerbated by increasing trait dimensionality (for
simulations with 64 traits, Type I error exceeded
0.90) (Fig. 3g–h). In contrast, the Type I error and
statistical power for pairwise composite likelihood-
based tests was appropriate under all simulated
scenarios, and statistical power increased with increases
in trait dimensionality (which reflected the statistical
performance originally reported for phylogenetic partial
least squares by Adams and Felice (2014)). In light
of these findings, simulations were performed under
a variety of scenarios in order to identify conditions
under which distance-based phylogenetic least squares
display appropriate Type I error, and it was determined
that the statistical performance of phylogenetic partial
least squares depends at least partially on the input
evolutionary rate matrix (R) for simulations under the
null hypothesis. Whereas the simulations for Type I error
used to generate Figure 3g–h assumed independently
evolving traits (diagonal R), a fully parameterized
R with high covariance within blocks R11 and R22
(and R12 and R21 subsequently set to zero) yielded
appropriate Type I error and high statistical power for
both distance-based and pairwise composite likelihood-
based methods, suggesting that the robustness of
distance-based phylogenetic partial least squares is
highly sensitive to low within-group covariation.
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FIGURE 4. Results of maximum pairwise composite likelihood tree transformation parameters for the Ornstein–Uhlenbeck (a–b), Early-Burst
(c–d), and Pagel’s � (e–f) models. Simulations were performed on 1000 simulated pure-birth phylogenies with data of trait dimension 2, 5, 10,
25, 31, and 50. Simulated tree transformation parameters were as follows: Ornstein–Uhlenbeck �=0.0 (for Type I error), 0.25, 0.5, 1.0, and 2.0;
Early-Burst rate=0.0 (for Type I error), −0.25, −0.5, −0.75, and −1.0; Pagel’s �=1.0 (for Type I error), 0.75, 0.5, 0.25, and 0.0. Left panels show mean
parameter estimates of 1000 simulations (gray bars represent standard deviation) corresponding to the tree transformation parameter indicated
by arrows. Right panels indicate Type I error and statistical power under the range of simulated conditions.

Testing for Evolutionary Covariation
Simulations were performed to assess the statistical

performance of testing for the presence of evolutionary
covariance in a multivariate trait. For this test, the
null hypothesis is simulated by constraining the off-
diagonal elements of the evolutionary rate matrix
to zero, whereas the alternative hypothesis uses an
unconstrained evolutionary rate matrix. As expected,
this test exhibited statistical performance similar to that
of tests for evolutionary covariance between trait groups
(Fig. 3h), displaying appropriate Type I error rates
and increasing statistical power as trait dimensionality
increased.

Estimation of Alternative Evolutionary Models
Type I error and statistical power of maximum

pairwise composite likelihood estimation was evaluated

for three common tree transformations: Ornstein–
Uhlenbeck, Early-Burst, and Pagel’s � (Fig. 4). Bias
and error of parameter estimates was also assessed
(Fig. 4). Estimates of Page’s �, the Ornstein–Uhlenbeck
parameter �, and the Early-Burst rate parameter
were generally unbiased, with increasing accuracy
and precision as the number of trait dimensions
was increased, although estimates for the Ornstein–
Uhlenbeck parameter � were extremely variable when
simulated under larger values � >1). As expected, model
tests exhibited appropriate Type I error and increasing
statistical power with increases in trait dimensionality.

Higher Dimensional Traits
A random 32-species phylogeny was generated and

multivariate data with 2, 32, 64, and 1024 traits with
random covariance were simulated under an Early-
Burst model with a rate parameter of −0.5. The
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FIGURE 5. The pairwise composite log-likelihood surface for the Early-Burst rate transformation for trait data of dimension 2, 32, 64, and 1024,
which were simulated on a 32-species phylogeny under an Early-Burst model of phenotypic evolution with a rate parameter of −0.5. For the
1024-trait data set, a Monte Carlo approach was performed using 10,000 random pairwise combinations to approximate the pairwise composite
log-likelihood surface, and polynomial regression was performed to obtain a smoothed estimate of the likelihood surface. Regardless of the
number of traits, the simulated Early-Burst rate of −0.5 was strongly identifiable and was recovered via maximum pairwise composite likelihood
estimation.

pairwise composite log-likelihood surface was assessed
for 50 values (spanning −1 to 0) of the Early-Burst
rate parameter for the simulated 2, 32, and 64-
dimensional traits. For the 1024-dimensional trait, the
Monte Carlo-based approach (described above) was
performed using 10,000 random pairwise combinations
to approximate the composite log-likelihood surface.
Polynomial regression was then performed to obtain
a smoothed estimate of the pairwise composite log-
likelihood surface. The rate value corresponding to the
maximum predicted value of the resulting polynomial
regression was −0.49, consistent with simulated
conditions and the rates recovered for simulated data
sets of dimension 2, 32, and 64 (rate=−0.5) (Fig. 5).

CONCLUSION

Distance-based multivariate comparative methods
offer a framework for testing evolutionary hypotheses
for high-dimensional traits while avoiding several
problems associated with high dimensionality (e.g.,
singular covariance matrices and low statistical
power). However, extremely large data sets may be
computationally infeasible using a distance-based
approach. An equivalent covariance-based approach is
described in Appendices 1–2 which allows fast linear-
time implementation (implemented in the R package
phylocurve), thus avoiding most of the computational
challenges associated with distance-based methods.

A novel approach based on pairwise composite
likelihood is also proposed. These methods (also

implemented in phylocurve) allow for greater flexibility
than distance-based methods, such as the ability
to incorporate multiple evolutionary hypotheses and
alternative evolutionary models. An approach for
incorporating within-species variation and missing data
is also discussed. Simulations revealed high statistical
power and appropriate Type I error for these methods,
whereas some distance-based approaches (D−PGLS and
phylogenetic partial least squares) exhibited elevated
Type I error under various scenarios, and regime-specific
rate comparisons exhibited extremely low statistical
power when rate ratios differed among traits.

It is important to note that despite promising
results from statistical simulations, both distance-based
methods and the new methods described here make
several critical assumptions regarding the evolution of
high-dimensional traits. Most notably, all models were
simulated such that model parameters applied equally
to all traits of interest. However, the consequences of
violating these assumptions are unknown. For instance,
consider phylogenetic regression on a high-dimensional
trait in which a handful of traits are strongly driven
by a predictor variable but the remaining traits are
independent of the predictor variable. Regardless of
the overall P-value obtained, the biological relevance
of the result is unclear: a significant finding suggests
correlation where none exists for the majority of
traits, whereas a nonsignificant result fails to detect
potentially important correlations for the handful of
affected traits. Under such circumstances, generalized
high-dimensional metrics may not be ideal for testing
evolutionary hypotheses, although methods to detect
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this type of situation are currently lacking. While
high-dimensional comparative methods provide a
potentially powerful framework for approaching the
study of complex phenotypic evolution, this framework
will benefit substantially from the development of
model diagnostic techniques, such as high-dimensional
multivariate methods for detecting violations of model
assumptions and for assessing model adequacy (Pennell
et al. 2015).
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APPENDIX 1. A COVARIANCE-BASED (R-MODE)
RE-EXPRESSION OF MULTIVARIATE DISTANCE-BASED

Q-MODE) COMPARATIVE METHODS

To address issues of statistical power and non-
invertible matrices, and to provide a framework for
estimating generalized statistics for high-dimensional
multivariate traits, Adams (2014 a–c) proposed several
phylogenetic comparative methods based on a distance-
based (Q-mode) approach. Consider a phylogeny with
N extant species on which M traits are observed, given
as an N×M data matrix (Y). The N×N phylogenetic
covariance matrix (C) is parameterized by branch
lengths and the specified evolutionary model (e.g.,
Brownian motion). The eigenvectors (U) and diagonal
matrix of eigenvalue square roots (V1/2) of C are
used to construct the phylogenetic transformation
matrix (T)

T=
(

UV1/2Ut
)−1

(A1)

which is then matrix multiplied by relevant matrices
of interest (e.g., TX, TY, T(Y−E(Y))) to remove
phylogenetic covariance from the data (Garland and Ives
2000). Next, the Euclidean distances of phylogenetically
transformed data from the origin are calculated (PD),
resulting in an N-length vector which is then used for
multivariate comparative calculations.

Evolutionary Rates: Distance-Based (Q-mode) Methods
Various methods have been proposed to quantify

and compare evolutionary rates for univariate traits,
including contrast-based (Garland 1992), generalized
least squares-based (Martins and Hansen (1997)), and
likelihood-based (O’Meara et. al 2006; Thomas et al.
2006), as well as Bayesian methods (Rabosky et al. 2014).
For high-dimensional data, Adams (2014c) proposed
an estimate called �2

mult, which is a single consensus
evolutionary rate for the entire multivariate trait. �2

mult
is estimated by dividing the Euclidean distance of the
cross-product of phylogenetically transformed residuals
from the origin is by the total number of observations
(NM):

�2
mult =

PDt
Y−E

(
Y

)
,0

PDY−E
(
Y

)
,0

NM
(A2)

The estimate of �2
mult can be used to statistically

compare evolutionary rates among groups of species
(Adams 2014c) or among groups of traits (Denton and
Adams 2015). To test whether �2

mult differs among
species groups (as implemented in the geomorph function
compare.evol.rates), subset groups of size Nspecies.subj are
used to estimate �2

species.sub for each species group
by replacing PDY−E(Y),0 with (PDY−E(Y),0)species.subj
and N with Nspecies.subj in equation (2). The observed

ratio of regime-specific �2
species.sub values is compared

to the null distribution of �2
species.sub ratios via

phylogenetic simulation (Adams 2014c). Similarly,
to test for differences in �2

mult among groups of
traits (as implemented in the geomorph function
compare.multi.evol.rates), �2

trait.sub is calculated for each
trait group by replacing M with Mtraits.subk and
PDY−E(Y),0 with PDYk−E(Yk),0 in equation (2) (where Yk
contains Mtrait.subk variables), and the observed ratio
of group-specific �2

trait.sub values is compared to the
null distribution of �2

trait.sub via phylogenetic simulation
(Denton and Adams 2015).

Evolutionary Rates: Covariance-Based (R-mode) Methods

The calculation of �2
mult can be simplified considerably

using a covariance-based approach, as �2
mult is simply the

arithmetic mean of maximum likelihood evolutionary
rates for each trait considered individually:

�2
mult =

M∑
i=1

((
yi −E

(
yi

))tC−1(
yi −E

(
yi

)))
NM

(A3)

Similarly, �2
trait.sub for a trait group subset k is simply

the arithmetic mean of evolutionary rates for individual
traits in Yk .
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The calculation of regime-specific �2
species.sub can

be calculated as the mean maximum likelihood
variance of the phylogenetically transformed residuals
(T(Y−E(Y))species.sub). Alternatively, the computation of
T can be avoided using either the “noncensored” or
“censored” approach described by O’Meara et al. (2006),
the latter of which provides an efficient closed-form
estimate of �2

species.sub, in which equation (3) is applied
to a phylogeny and data set pruned to only contain the
species represented in regime j. The censored estimate is
not identical to the distance-based estimate of �2

species.sub
(the censored approach estimates a separate E(Y) for
each pruned tree). However, the censored approach is
a close approximation, retains appropriate Type I error
and statistical power, and is far more efficient than
the eigendecomposition of C and subsequent inversion
of an N×N matrix (which is required in equation (1)
in order to construct the phylogenetic transformation
matrix T).

If phylogenetic transformation cannot be avoided, an
alternative to equation (1) which avoids matrix inversion
can be used to construct the phylogenetic transformation
matrix:

T=UV∗Ut (A4)

where V∗ is an N×N diagonal matrix with
√

1/v along
the diagonal, where v contains the eigenvalues of C (Li
2007). If C is singular, infinite or undefined values in V∗
may be replaced with zero (although the consequences
of proceeding with comparative analyses on singular
matrices are largely untested).

Functions for comparing evolutionary rates
using the described covariance-based approach are
implemented in the phylocurve functions fast.geomorph.
compare.evol.rates and fast.geomorph.compare.multi.
evol.rates. These functions (and all other phylocurve
functions that begin with “fast.geomorph”) are
implemented to demonstrate the equivalence and
application of fast linear-time computations for
analogous distance-based functions in geomorph (see
Appendix 2 for a discussion of fast covariance-based
approaches).

Phylogenetic Signal (Blomberg’s K)
Blomberg’s (2003) K, which in univariate form is

calculated as:

K =
(
y−E

(
y
))t(y−E

(
y
))

(
y−E

(
y
))tC−1

(
y−E

(
y
))

/
tr

(
C

)−N
(

1tC−11
)−1

N−1
(A5)

can be extended to multivariate form Kmult (Adams
2014a, as implemented in the geomorph function

physignal) using the distance-based formula

Kmult =
Dt

Y−E
(
Y

)
,0

DY−E
(
Y

)
,0

PDt
Y−E

(
Y

)
,0

PDY−E
(
Y

)
,0

/
tr

(
C

)−N
(

1tC−11
)−1

N−1

(A6)
where DX,0 is the non-phylogenetically transformed
Euclidean distance between some matrix and the origin.
As with �2

mult, the value Kmult can be calculated
using a covariance-based approach (implemented
in the phylocurve function fast.geomorph.physignal) by
considering the sums of squared residuals for each
individual trait:

Kmult =

M∑
i=1

((
yi −E

(
yi

))t(yi −E
(
yi

)))
M∑

i=1

((
yi −E

(
yi

))tC−1
(
yi −E

(
yi

)))
/

tr
(
C

)−N
(

1tC−11
)−1

N−1
(A7)

As with univariate Blomberg’s K, significance of Kmult
is determined by phylogenetic permutation (Blomberg
2003; Adams 2014a).

Phylogenetic Generalized Least Squares
Distance-based phylogenetic generalized least squares

(D-PGLS, as implemented in the geomorph function
procD.pgls) regression can be performed by regressing
EY∼EX and EY∼E1 to obtain predicted values ŶX
and Ŷ1, which is then used to calculate summary
statistics including sums of squares, F-ratios, and
R2, and significance is determined by phylogenetic
permutation (Adams 2014b). To perform the covariance-
based equivalent of D-PGLS regression (phylocurve
function fast.geomorph.procD.pgls), first, a p×M (where
p is the number of regression coefficients to be estimated
for each trait dimension) matrix of dimension-specific
regression coefficients is calculated as

β= (XtC−1X)−1XtC−1Y (A8)

where X is the M×p model matrix for PGLS regression,
typically consisting of a column of ones and one
or more columns of univariate predictor variables
(Martins and Hansen 1997; Revell 2010). Note that Y
is an N×M matrix in equation (8), unlike univariate
PGLS in which Y is an N×1 vector. Next, N×
M matrices of predicted species values from the
regression ŶX =X� and null model Ŷ1 =1E(Y) are used
to calculate residuals, and sums of squares are obtained
from SSε̂X =∑M

i=1((yi −ŷiX)tC−1(yi −ŷiX)) and SSε̂1 =∑M
i=1((yi −ŷi1)tC−1(yi −ŷi1)) to calculate mean squared

error, F-ratios, and R2. Phylogenetic permutation is
then performed to determine significance, and results
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are identical to D-PGLS regression (Adams 2014b;
Adams and Collyer 2015). It should be noted that
although phylogenetically independent contrasts can
be used to calculate these quantities (Felsenstein
1985), phylogenetic permutation must be performed
on raw permuted values (not contrasts), and then
independent contrasts must be recalculated for each
permutation (Adams and Collyer 2015). However,
in contrast to the findings of Adams and Collyer
(2015), an appropriately and efficiently implemented
phylogenetically independent contrasts-based approach
is indeed faster than D-PGLS (Fig. A2c–d).

Phylogenetic Partial Least Squares
In addition to the methods discussed above, Adams

and Felice (2014) proposed a distance-based method for
evaluating covariation between two multivariate traits
Y1 and Y2 called phylogenetic partial least squares (PLS).
First, the evolutionary rate matrix R for Y is calculated
using the generalized least squares restricted maximum
likelihood estimator:

R=
(
Y−XE

(
Y

))tC−1(
Y−XE

(
Y

))
N−1

(A9)

The covariance of Y1 and Y2 is partitioned into four
blocks:

R=
(

R11 R12
R21 R22

)
(A10)

and singular-value decomposition is subsequently
performed on R12. Next, the values Y−E(Y) are
projected onto the phylogenetic transformation matrix
T, and T(Y1 −E(Y1)) and T(Y2 −E(Y2)) are matrix
multiplied by the left (U) and right (V) singular
vectors of R12, respectively. The first two columns
of the resulting scores are regressed to determine
the evolutionary correlation between Y1 and Y2, and
phylogenetic permutation is used to assess significance
of the PLS regression (Adams and Felice 2014; geomorph
function phylo.integration). To perform the covariance-
based equivalent of phylogenetic PLS (as implemented
in the phylocurve function fast.geomorph.phylo.integration),
(Y1 −E(Y1))U1 and (Y2 −E(Y2))V1 are regressed using
phylogenetically independent contrasts (Felsenstein
1985) regressed through the origin, or equivalently using
PGLS. The resulting regression correlation is equivalent
to the PLS correlation obtained from distance-based
phylogenetic PLS, and significance is assessed using
phylogenetic permutation (Adams and Felice 2014).

APPENDIX 2. FAST COMPUTATIONS FOR HIGH-DIMENSIONAL

COMPARATIVE MODELS

Efficient Calculations for High-Dimensional Data
For repeated calculations on a given phylogeny (e.g.,

as is associated with bootstrapping procedures), a

substantial portion of the computational burden of
phylogenetically independent contrasts (a linear-time
algorithm) is associated with redundant operations (e.g.,
reordering internal edges, conversion of data types, etc.).
In some cases, repeating these steps can account for
over 90% of computational time. To minimize redundant
operations, all preparation steps can be performed in a
single function call, and then relevant quantities (e.g.,
phenotypic data or branch lengths) can be updated
as needed prior to calling the independent contrasts
algorithm. Additionally, phylogenetically independent
contrasts can be performed simultaneously on all traits
of interest by performing relevant calculations on the
full matrix Y rather than on individual vectors. Refer to
Appendix 3 for details on implementing these methods.

The quantity (Y−E(Y))tC−1(Y−E(Y)), which is
simply the cross-product of the matrix of independent
contrasts of Y, can be calculated efficiently in linear
time using phylogenetically independent contrasts. The
independent contrasts algorithm also automatically
calculate E(Y), so a separate ancestral reconstruction is
unnecessary (see Appendix 3). Contrast variances
for each node (v) and the length of the two
edges extending from the root of the independent
contrast-transformed tree (x) can be used to calculate
1tC−11=∏

x/
∑

x and log|C|= log(
∏

x/
∑

x)+∑
logv

in linear time (Felsenstein 1985; Freckleton 2012). Using
these formulas, any quantity of the form LtC−1R
(corresponding to left and right matrices of compatible
dimensions, such as X and Y) can be computed in linear
time as LtC−1R=Lt

picRpic +E(L)E(R)t(1′C−11) (for a
related linear-time algorithm, see Ho and Ané 2014).
Quantities required for the multivariate log-likelihood
may also be calculated efficiently: log|R⊗C|=
N log|R|+Mlog|C| and log|Xt(R⊗C)−1X|=
Mlog|(Xt

picXpic +XancXt
anc(1′C−11))|−plog|R| (where p

is the number of columns of X, and the matrix subscripts
pic and anc denote phylogenetically independent
contrasts and the estimated root state for each column
of a given matrix, respectively).

A more complex approach is required to
accommodate multiple regimes. The following
algorithm, modified from the linear-time algorithm
described by Ho and Ané (2014), calculates quantities of
the form Q=LtW−1R and log|W| in linear time relative
to the number of species, where W is the NM×NM
matrix describing species-trait covariance for multiple
regimes (under a single regime, W=R⊗C), and L and
R are matrices of compatible dimensions (e.g., X and
Y). These quantities can then be used for log-likelihood
calculations (refer to page 406 of Ho and Ané (2014) for
details of the original approach on which the following
is based). The following algorithm traverses the tree
postorder from the tips to the root:

1. For a tree with a single tip, let Z(e) =∑r
a=1(tepa,eRa)

be an M×M matrix representing the length of
edge e scaled by regime-specific rate matrices and
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FIGURE A1. Speed comparisons for rate comparisons among species rate regimes using a) the distance-based geomorph (version 2.17) function
compare.evol.rates, b) the covariance-based phylocurve function fast.geomorph.compare.evol.rates (based on phylogenetic transformation of residuals;
censored=FALSE), and c) and the covariance-based phylocurve function fast.geomorph.compare.evol.rates using the censored method of O’Meara et
al. (2006) (censored=TRUE). Speed comparisons were performed on pure-birth phylogenies containing 10, 24, 50, 100, 250, 500, and 1000 species
with simulated data containing 10, 24, 50, 100, and 250 traits. Computation times on a log10-scaled axis are also plotted for phylocurve functions.

their respective proportions assigned to each edge.
Then p=Z(e)−1

, Ut
l =Ltp, Vr = (Rtp)t, Q=LtpR,

and log|W|= log|Z(e)|.
2. For a tree with two or more tips and

root edge e, again let Z(e) =∑r
a=1(tepa,eRa).

Then pA =∑
sps, log|W|=∑

s log|Ws|+
log|I+Z(e)pA|, p=pA(I+Z(e)pA)−1, Q=

(∑
s

Qs

)
−

Ut
l,s(I+Z(e)pA)−1Z(e)Vr,s, Ut

l =
(∑

sUt
l,s

)
(I+Z(e)pA)−1, and Vt

r =
(

(
∑

sVt
r,s)(I+Z(e)pA)−1

)t
.

3. At the root of the full tree, return Q and log|W|.

Fast Covariance-Based Implementations of Distance-Based
Methods

The computational performance of distance-based
methods implemented in geomorph version 2.1.7
(compare.evol.rates, compare.multi.evol.rates, physignal,
phylo.pls (now phylo.integration as of version 3.0), and
procD.pgls) were compared to fast covariance-based
phylocurve functions (fast.geomorph.compare.evol.rates,
fast.geomorph.compare.multi.evol.rates,
fast.geomorph.physignal, fast.geomorph.phylo.integration,
and fast.geomorph.procD.pgls). Computational times
for each method were compared using 10, 24, 50,
100, 250, 500, and 1000 species and 10, 24, 50, 100,
and 250 traits (Figs. A1–2). For data sets with a low
number of species (<50), the speed of distance-based
methods was generally comparable to covariance-based
methods. For data sets with higher numbers of species,
covariance-based methods were consistently faster
(in some cases up to ~1000 times faster). The most
time-consuming steps of distance-based methods in
geomorph include inverting the phylogenetic covariance
matrix and performing an eigendecomposition of
the phylogenetic covariance matrix, both of which
are avoided by covariance-based methods (with the
exception of fast.geomorph.compare.evol.rates, which

requires an eigendecomposition for computing the
phylogenetic transformation matrix, unless the censored
approach is used). Covariance-based functions that
rely on phylogenetic permutation for hypothesis
tests (fast.geomorph.procD.pgls, fast.geomorph.physignal,
and fast.geomorph.phylo.integration) operate in
linear time relative to the number of species.
Although fast.geomorph.compare.evol.rates and
fast.geomorph.compare.multi.evol.rates are substantially
faster than compare.evol.rates and compare.multi.evol.rates
(respecitvely) for data sets with a large numbers of
species, all four functions rely on the sim.char function
in geiger (Pennell et al. 2014) for hypothesis testing,
which operates with polynomial increases in time as
the number of species increases and is thus a nonlinear
rate-limiting step for fast.geomorph.compare.multi.

APPENDIX 3. EFFICIENT REPEATED CALCULATIONS OF

PHYLOGENETICALLY INDEPENDENT CONTRASTS

require(phylocurve)
require(ape)
nspecies <- 1000
ntraits <- 500
tree <- rtree(n = nspecies) # Simulate
a random 1000-species phylogeny

Y <- matrix(rnorm(nspecies*ntraits),
ncol=ntraits) # Simulate data

rownames(Y) <- tree$tip.label
# Call prep_multipic (a phylocurve
function)

prep.Y <- prep_multipic(x = Y,
phy = tree)

# Calculate phylogenetically independent
contrasts using pic (ape package)

Y.pics.ape <- apply(X = Y,MARGIN =
2,FUN = pic,phy = tree)

# Calculate PICs using multipic
# returns a list with contrasts,
sum_invV, log_detV, root

# ’contrast’ is a matrix of PICs
# ’sum_invV’ is equal to
sum(solve(vcv(tree)))
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FIGURE A2. Speed comparisons for rate comparisons among trait groups using a) the distance-based geomorph (version 2.1.7) function
compare.multi.evol.rates and b) the covariance-based phylocurve function fast.geomorph.compare.multi.evol.rates; tests of Kmult using c) the
distance-based geomorph (version 2.1.7) function physignal and d) the covariance-based phylocurve function fast.geomorph.physignal; multivariate
phylogenetic regression using e) the distance-based geomorph (version 2.1.7) function procD.pgls and f) the covariance-based phylocurve function
fast.geomorph.procD.pgls; and phylogenetic partial least squares using g) the distance-based geomorph (version 2.1.7) function phylo.pls (now
phylo.integration in versions �3.0.0) and h) the covariance-based phylocurve function fast.geomorph.phylo.integration. Speed comparisons were
performed on pure-birth phylogenies containing 10, 24, 50, 100, 250, 500, and 1000 species with simulated data containing 10, 24, 50, 100, and 250
traits. Computation times on a log10-scaled axis are also plotted for phylocurve functions.

# ’log_detV’ is equal to
log(det(vcv(tree)))

# ’root’ is the maximum likelihood
phenotypic value at the root

Y.pics.phylocurve <-
do.call(multipic,prep.Y)

# Verify that results are identical
range(Y.pics.ape -
Y.pics.phylocurve$contrasts)

# Simulate 50 data sets
niter <- 50
randomY <- vector(mode = “list”,
length = niter)

for(i in 1:niter)

{
randomY[[i]] <- matrix
(rnorm(nspecies*ntraits),ncol=ntraits)

rownames(randomY[[i]]) <-
tree$tip.label

}
#######################################
# Compare time to calculate PICs on
50 simulted data sets using pic
vs multipic

#
##### pic function
system.time(for(i in 1:niter) apply
(X = randomY[[i]],MARGIN = 2,
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FUN = pic,phy = tree))
##### user system elapsed
##### 18.35 0.23 18.61
##### multipic function
system.time(for(i in 1:niter)
{
prep.Y$phe[1:nspecies,] <- randomY[[i]]
# update prep.Y$phe with new data

do.call(multipic,prep.Y)
})
##### user system elapsed
##### 1.38 0.14 1.52
#
#######################################
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