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Abstract
Assessing	the	importance	of	different	taxa	for	inferring	evolutionary	history	is	a	criti-
cal,	but	underutilized,	aspect	of	systematics.	Quantifying	the	importance	of	all	taxa	
within	a	dataset	provides	an	empirical	measurement	that	can	establish	a	ranking	of	
extant	taxa	for	ecological	study	and/or	quantify	the	relative	importance	of	newly	an-
nounced	or	redescribed	specimens	to	enable	the	disentangling	of	novelty	and	infer-
ential	influence.	Here,	we	illustrate	the	use	of	taxon	influence	indices	through	analysis	
of	both	molecular	and	morphological	datasets,	introducing	a	modified	Bayesian	ap-
proach	to	the	taxon	influence	index	that	accounts	for	model	and	topological	uncer-
tainty.	Quantification	of	taxon	influence	using	the	Bayesian	approach	produced	clear	
rankings	 for	 both	dataset	 types.	Bayesian	 taxon	 rankings	 differed	 from	maximum	
likelihood	(ML)-	derived	rankings	from	a	mitogenomic	dataset,	and	the	highest	rank-
ing	 taxa	exhibited	 the	 largest	 interquartile	 range	 in	 influence	estimate,	 suggesting	
variance	in	the	estimate	must	be	taken	into	account	when	the	ranking	of	taxa	is	the	
feature	 of	 interest.	Application	 of	 the	Bayesian	 taxon	 influence	 index	 to	 a	 recent	
morphological	analysis	of	 the	Tully	Monster	 (Tullimonstrum)	 reveals	 that	 it	exhibits	
consistently	 low	 inferential	 importance	across	two	recent	treatments	of	the	taxon	
with	alternative	character	codings.	These	results	lend	support	to	the	idea	that	taxon	
influence	indices	may	be	robust	to	character	coding	and	therefore	effective	for	mor-
phological	 analyses.	 These	 results	 underscore	 a	 need	 for	 the	 development	 of	 ap-
proaches	 to,	 and	 application	of,	 taxon	 influence	 analyses	 both	 for	 the	purpose	of	
establishing	robust	rankings	for	future	inquiry	and	for	explicitly	quantifying	the	im-
portance	of	individual	taxa.	Quantifying	the	importance	of	individual	taxa	refocuses	
debates	 in	morphological	 studies	 from	 questions	 of	 character	 choice/significance	
and	taxon	sampling	to	explicitly	analytical	techniques,	and	guides	discussion	of	the	
context	of	new	discoveries.
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1  | INTRODUC TION

A	 fundamental	 question	 in	 systematics	 centers	 on	 understanding	
the	importance	of	different	taxa	for	understanding	phylogenetic	re-
lationships.	However,	quantifying	 taxon	 importance	has	hinged	on	
varying	definitions	of	the	term	across	many	biological	disciplines.	In	
conservation	biology	and	ecology,	clades	have	traditionally	been	as-
signed	values	for	“phylogenetic	diversity	[PD]”	(Faith,	1992a,b)	and	
taxa	have	been	assigned	estimates	of	 “originality/evolutionary	dis-
tinctiveness	 [ED]”	 (Pavoine,	Ollier,	&	Dufour,	2005;	Redding	et	al.,	
2008;	 and	 sources	 therein),	 both	 defined	 using	 combinations	 of	
character	change	reconstruction	or	branch	lengths,	and	node	count-
ing	across	clades	or	between	taxa	of	interest.	Computational	biology	
has	built	upon	these	definitions	of	importance	and	has	cast	impor-
tance	in	combinatorial	terms	employing	PD	and	ED	as	measures	in	a	
constrained	optimization	problem	(the	“Noah’s	Ark	Problem	(NAP),”	
a	subset	of	the	knapsack	problem)	to	solve	for	the	amount	of	unique	
evolutionary	history	that	can	be	preserved	in	a	subset	of	taxa	given	
assumptions	on	an	amount	of	funding,	and	the	relationship	of	fund-
ing	allocated	to	probability	of	survival	(Billionnet,	2013;	Hartmann	&	
Steel,	2006;	Nee	&	May,	1997;	Weitzman,	1998).

In	contrast	to	fixed-	tree	approaches,	in	systematics,	importance	
has	been	phrased	in	inferential	terms,	using	sets	of	trees	and	either	
quartets	or	triplets	(e.g.,	leaf	and	phylogenetic	stability	indices	[Pol	
&	Escapa,	2009;	and	sources	therein])	or	pruning	to	assess	a	taxon’s	
effect	on	phylogenetic	resolution	(“wildcard”	taxa	[Nixon	&	Wheeler,	
1992],	 “problematic”	 and	 “critical”	 taxa	 [Siddall,	 1995],	 and	 later	
“rogue”	and	“unstable”	taxa	[Aberer,	Krompass,	&	Stamatakis,	2013;	
Goloboff	&	Szumik,	2015]).	Taxon	importance	measures	emphasiz-
ing	instability	of	taxa	have	been	utilized	predominantly	to	increase	
node	 support	 values	 by	 identifying	 and	 removing	 some	 subset	 of	
taxa	 from	 analyses,	 using	 various	 pipelines	 and	 optimality	 criteria	
(e.g.,	Aberer	et	al.,	2013;	Goloboff	&	Szumik,	2015).

An	 alternative	 approach,	 suggested	 by	Mariadassou,	 Bar-	Hen,	
and	Kishino	 (2012),	 is	 instead	a	 total-	taxa	approach	that	assigns	a	
value	called	taxon	influence	to	all	taxa	within	a	dataset	based	on	a	
leave-	one-	out	taxon	jackknifing	and	reinference	procedure.	This	ap-
proach	provides	a	relative	measure	to	generate	ranked	lists	of	a	full	
set	of	taxa,	rather	than	acting	as	a	cutoff	method,	like	rogue	taxon	
analysis,	or	on	subtrees,	like	leaf	or	taxon	stability	indices.	Because	
a	 taxon	 influence	value	 is	derived	 from	 independent	 reanalysis	of	
the	nearly	complete	original	data	compared	to	the	full	original	data,	
it	 is	a	phylogenetic	 inference-	based	reframing	of	a	distinctiveness	
measure	that	is	derived	from	a	full	analysis	rather	than	partitioning	
of	a	single	analysis.	Additionally,	 the	generality	of	 taxon	 influence	
methods	 makes	 them	 applicable	 to	 many	 underassessed	 species,	
for	which	 character	data,	 either	DNA	or	morphology,	may	be	 the	
only	thing	known	(Mace,	Gittleman,	&	Purvis,	2003).	Furthermore,	
unlike	 ED/PD	measures,	 taxon	 influence	 analyses	 do	 not	 require	
time-	calibrated	phylogenies,	which	frequently	necessitate	a	degree	
of	knowledge	of	the	fossil	and/or	biogeographic	record	unavailable	
for	many	groups	of	interest.	Given	this	broad	applicability	and	min-
imal	assumptions,	taxon	 influence	approaches	stand	to	potentially	

bridge	the	gap	between	definitions	of	 importance	 in	conservation	
and	systematics	by	generating	minimal-	assumption	taxon	rankings	
based	on	whole	tree	inference,	which	may	subsequently	guide	the	
acquisition	of	data	for	clades	of	interest	that	lack	the	kind	of	infor-
mation	necessary	for	NAP	approaches.	Furthermore,	such	rank	lists	
may	be	useful	to	track	changes	in	character	data	as	more	analyses	
at	phylogenomic	(Bragg,	Potter,	Bi,	&	Moritz,	2016;	Faircloth	et	al.,	
2012)	and	phenomic	 (e.g.,	Copes,	Lucas,	Thostenson,	Hoekstra,	&	
Boyer,	2016;	Goswami,	2015;	O’Leary	&	Kaufman,	2011)	scales	in-
crease	in	size.

Similarly,	 because	 taxon	 influence	 values	 are	 estimated	 for	 all	
taxa	in	a	dataset,	the	relative	position	of	a	taxon	of	 interest	 in	the	
ranking	of	taxa	may	be	useful	for	explicitly	quantifying	hypotheses	
of	taxon	importance	implicit	in	many	announcements	of	newly	dis-
covered	 or	 redescribed	 taxa.	 For	 example,	 in	 publications	 of	 new	
taxa	based	on	phenomic	data	generated	by	tomographic	methods,	it	
remains	a	standard	procedure	to	place	these	specimens	using	a	par-
simony	analysis	and	to	present	character	optimizations	and	contex-
tualization	of	the	new	taxon	based	on	its	 inferred	position	relative	
to	other	known	groups	on	either	an	optimal	or	consensus	topology	
(e.g.,	Giles,	Friedman,	&	Brazeau,	2015;	McCoy	et	al.,	2016;	Van	Roy,	
Daley,	&	Briggs,	2015;	Zhu	et	al.,	 2013).	 Such	announcements	 are	
effectively	verbal	hypotheses	of	taxon	importance.	Despite	this	fact,	
existing	 inferential	 methods	 are	 insufficient	 for	 testing	 these	 hy-
potheses,	because	taxon	importance	is	a	relative	measure	that	must	
account	for	both	the	importance	of	the	other	taxa	and	the	effects	of	
the	characters	used	to	infer	the	phylogeny.

However,	two	problems	exist	with	current	taxon	influence	imple-
mentations.	First,	existing	implementations	are	based	on	maximum	
likelihood,	which	 infers	a	single	optimized	tree	topology.	 Influence	
values	for	a	taxon	derived	from	trees	estimated	using	ML	are	there-
fore	based	on	a	comparison	of	only	two	topologies	that	are	assumed	
to	 be	 fixed	 estimates.	 These	 estimates	 thus	 critically	 neglect	 un-
certainty—a	 value	 as	 important	 as	 the	 tree	 itself	 (Huelsenbeck	 &	
Rannala,	2004)—an	omission	which	stands	to	significantly	affect	the	
inferred	influence	values	and	rankings	generated	by	the	taxon	influ-
ence	procedure.

Second,	 existing	 taxon	 influence	 procedures	 discussed	 in	
Mariadassou	et	al.	 (2012)	utilize	either	the	Robinson-	Foulds	metric	
(RF;	Robinson	and	Foulds,	1981)	or	branch	 score	difference	 (BSD;	
Kuhner	 and	 Felsenstein,	 1994)	 to	 quantify	 differences	 between	
trees.	 Both	 values	 are	 derived	 from	 the	 computational	 literature	
and	are	agnostic	to	the	issue	of	influential	taxa.	For	example,	the	RF	
metric	can	produce	maximal	values	 for	 trivial	 rearrangements	of	a	
single	taxon	pair	(Böcker,	Canzar,	&	Klau,	2013;	Lin,	Rajan,	&	Moret,	
2012),	making	it	likely	susceptible	to	the	effects	of	rogue	taxon	be-
havior.	 The	BSD,	 although	 accounting	 for	 both	 branch	 length	 and	
topological	differences,	is	based	on	the	RF	metric	and	likely	inherits	
this	problem.	Additionally,	the	interaction	of	differences	in	topology	
and	branch	lengths	in	the	BSD	may	counteract	one	another	in	cases	
where	short	branch	lengths	and	topological	differences	occur	simul-
taneously	(Kuhner	&	Felsenstein,	1994).	A	tree	distance	specific	to	
questions	of	taxon	influence	remains	an	outstanding	problem.
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To	 address	 these	 issues	 and	 to	 demonstrate	 the	 utility	 of	
taxon	 influence	 analysis	 for	 both	 robust	 ranking	 and	 taxon	 rank	
placement,	we	apply	a	modified	version	of	 the	original	 taxon	 in-
fluence	index	(TII)	approach	of	Mariadassou	et	al.	(2012)	to	three	
published	 datasets:	 a	 complete	 mitogenomic	 dataset	 of	 reptiles	
(Jonniaux	&	Kumazawa,	 2008),	 here	 referred	 to	 as	 JK2008,	 and	
two	recently	published	datasets	debating	the	placement	of	the	un-
usual	fossil	taxon	Tullimonstrum	in	a	phylogenetic	context	(McCoy	
et	al.,	2016;	Sallan	et	al.,	2017).	We	account	for	 tree	uncertainty	
using	a	Bayesian	approach	to	TII	calculation	discussed,	but	not	im-
plemented,	by	Mariadassou	et	al.	(2012),	and	also	present	a	novel	
tree	distance	to	circumvent	problems	with	the	RF	metric	and	BSD	
invoked	in	the	original	publication.

2  | METHODS

2.1 | Phylogenetic analyses

Bayesian	phylogenetic	analyses	were	conducted	in	MrBayes	v.3.2.6	
(Ronquist	et	al.,	2012).	The	JK2008	dataset	was	analyzed	using	the	
same	model	parameterization	(GTR	+	I	+	Γ)	as	 in	Mariadassou	et	al.	
(2012).	Analysis	was	 run	using	a	single	chain	of	10	million	genera-
tions,	with	a	20%	burn-in.	The	Tullimonstrum	datasets	were	analyzed	
using	the	Mkv	+	Γ	model	(Lewis,	2001)	with	six	discrete	classes,	using	
a	single	chain	of	20	million	generations,	with	a	50%	burn-in.	In	both	
cases,	the	number	of	generations	required	to	reach	a	sufficient	topo-
logical	ESS	was	determined	by	calculation	of	approximate	ESS	values	
in	the	R	package	rwty	(Warren,	Geneva,	&	Lanfear,	2017).	Because	
the	TII	approach	is	a	single	taxon-	pruning	procedure,	all	jackknifed	
analyses	were	assigned	the	parent	number	of	generations.

2.2 | Taxon influence measurement

The	taxon	influence	index	(TII),	the	expected	distance	between	pairs	
of	 trees	 in	 the	 posterior	 distribution,	was	 calculated	 according	 to	
Mariadassou	et	al.	(2012):

where T*	is	the	posterior	distribution	of	trees	from	analysis	using	
all	taxa,	T′	is	a	posterior	distribution	of	trees	in	which	a	focal	taxon	
is	dropped	before	analysis,	T′i	is	a	phylogenetic	tree	from	a	poste-
rior T′	for	which	taxon	i	was	dropped	before	analysis,	T*i	is	a	tree	
from	 the	 posterior	T*	 in	which	 taxon	 i	 was	 dropped	 a posteriori 
for	 comparison	with	T′i,	wi	 is	 the	 posterior	 probability	 of	 a	 tree	
i,	and	d(●,●)	is	a	topological	distance	between	the	two	trees.	The	
original	 calculation	 from	Mariadassou	 et	al.	 (2012)	was	modified	
in	two	ways.

First,	 because	 comparisons	 between	 posterior	 distributions	 of	
trees	 based	 on	 pairwise	 distances	 between	 elements	 necessitate	
(

n

2

)

	summations,	where	n	is	the	number	of	unique	postburn-	in	to-
pologies,	to	fully	compare	the	high-	dimensional	posterior,	variance	
in	the	TII	value	due	to	a	finite	approximation	with	a	smaller	number	

of	sums	was	estimated	by	resampling.	For	each	iteration,	a	number	
of	 trees	 equal	 to	min(|T*|,|T′|)	 were	 sampled	without	 replacement	
from	 each	 posterior	 according	 to	 their	 posterior	 probabilities	 (wi),	
and	this	sample	was	used	to	calculate	the	TII	for	each	of	100	iter-
ations.	 The	estimated	TII	 value	 for	 each	 taxon	was	 the	median	of	
these	resampled	values.

Second,	given	the	potential	 issues	with	both	the	RF	metric	and	
BSD	regarding	influential	taxa,	informative	distances	between	trees	
were	defined	as	the	ratio	of	the	distance	between	the	trees	to	the	
size	of	the	shared	tree.	This	new	criterion	was	satisfied	by	a	value	
referred	to	here	as	the	SPR	excess,	an	SPR	distance—the	minimum	
number	of	subtree-	pruning	and	regrafting	rearrangements	required	
to	turn	one	tree	 into	another	 (e.g.,	Goloboff,	2008)—scaled	by	the	
number	of	taxa	in	the	maximum	agreement	subtree	(MAST,	(Gordon,	
1979;	Finden	&	Gordon,	1985;	Valiente,	2009),	and	see	Ge,	Wang,	
and	Kim,	2005	for	an	example	of	the	implications	of	deviation	in	tree	
shapes	between	a	difference	and	similarity	measure	in	the	context	
of	molecular	data).

Finally,	 for	comparison	 to	TII	estimates,	a	 rogue	 taxon	analysis	
(Aberer,	Pattengale,	&	Stamatakis,	2010;	Aberer	et	al.,	2013)	using	
the	 Mkv	+	Γ	 model	 was	 conducted	 in	 raxml	 v8.2.9	 (Stamatakis,	
2014).	 To	 standardize	 the	 comparison	 to	 a	 fixed	 set	 of	 trees,	 the	
postburn-	in	distribution	of	trees	from	the	Bayesian	analysis,	rather	
than	a	 collection	of	bootstrap	 trees,	was	used.	All	TII	 calculations	
were	conducted	using	scripts	written	by	the	authors	(Supplementary	
Information)	 in	 the	 R	 environment	 (R	 Core	 Team	 2016)	 using	 the	
ape	 (Paradis,	Claude,	&	Strimmer,	 2004),	phangorn	 (Schliep,	 2011),	
stringr	 (Wickham,	 2015),	 and	 gespeR	 (Schmich	 et	al.,	 2015)	 pack-
ages.	 Differences	 in	 taxon	 influence-	based	 rankings	 between	 the	
two Tullimonstrum	datasets,	 and	differences	 in	 rank	by	proportion	
of	missing	data,	were	calculated	 for	 this	dataset	using	 rank-	biased	
overlap	(Webber,	Moffat,	&	Zobel,	2010),	for	which	significance	was	
assessed	using	a	permutation	procedure	against	the	null	hypothesis	
of	dissimilar	rankings.

3  | RESULTS

3.1 | Phylogenetic trees

Phylogenetic	 analysis	 of	 the	 Jonniaux	 and	 Kumaza	 (JK2008)	
	dataset	demonstrated	convergence	in	the	postburn-	in	tree	topol-
ogy	 (approxESST	>	500)	and	ESS	>	200	for	all	model	parameters.	
The	 50%	 majority-	rule	 consensus	 tree	 (Figure	1)	 revealed	 high	
clade	support	values	throughout	most	of	the	tree,	with	 low	sup-
port		values	in	the	same	locations	as	those	inferred	for	bootstrap	
values	by	 Mariadassou	 et	al.	 (2012)	 for	 this	 dataset.	 The	 50%	
majority-	rule	 consensus	 topology	 inferred	 under	 the	 Bayesian	
analysis	was	identical	to	that	inferred	by	Mariadassou	et	al.	(2012)	
under	maximum	likelihood,	with	the	exception	of	 the	procedural	
collapse	 of	 the	 consensus	 tree	 for	 regions	 where	 clade	 sup-
port	values	were	under	50%.	There	were	36	unique	 trees	 in	 the	
	postburn-	in	 posterior	 distribution.	 The	 99%	 credibility	 interval	
contained	ten	of	these	trees.
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Phylogenetic	 analysis	 of	 the	 Tullimonstrum	 dataset	 demon-
strated	convergence	in	the	postburn-	in	tree	topology	(approxESST 
~	291),	 and	ESS	>	200	 for	all	model	parameters.	The	postburn-	in	
posterior	 distribution	 contained	 9877	 unique	 trees.	 The	 50%	
majority-	rule	 consensus	 tree	 (Figure	2)	 differed	 significantly	 from	
the	parsimony	analysis	of	McCoy	et	al.	(2016)	in	several	ways.	First,	
Metaspriggina	 was	 recovered	 as	 sister	 to	 the	 remaining	 ingroup	
taxa,	 with	 high	 support	 (1.0).	 Second,	 Tunicata	 was	 recovered	 as	
diverging	 before	 Cephalochordata,	 with	 high	 support	 (1.0).	 Third,	
the	 locations	 of	 the	 polytomies	 within	 the	 tree	 were	 shifted.	 A	
clade	 of	Haikuichthys +	Myllokunmingia	was	 recovered	 as	 sister	 to	
the	remaining	taxa,	with	low	support	(0.54).	In	the	remaining	taxa,	
Euconodonta, Gilpichthys,	 a	 clade	of	Myxinoidea	+	Myxinikela	 (sup-
port	0.71),	and	the	remaining	taxa	were	recovered	in	a	central	poly-
tomy.	Within	the	remaining	taxa,	Mayomyzon,	Tullimonstrum,	a	clade	
of	Priscomyzon, Pipiscius, Petromyzontida,	and	Mesomyzon	 (support	

0.7)	 were	 recovered	 in	 a	 polytomy	with	 the	 remaining	 taxa.	 The	
remaining	 taxa	 exhibited	 the	 same	 phylogenetic	 structure	 as	 in	
McCoy	et	al.	(2016).

3.2 | Taxon influence values

TII	analysis	of	the	JK2008	dataset	produced	mostly	well-	separated	
median	values,	with	a	small	number	of	downwardly	directed	out-
liers,	 an	 apparent	 negative	 relationship	 between	 taxon	 influence	
and	 the	 interquartile	 range	 of	 the	 TII	 estimate,	 and	 no	 apparent	
relationship	between	TII	estimate	and	the	skewness	of	the	distribu-
tion	(Figure	3).

The	medians	of	the	three	highest	ranking	taxa	(Pelomedusa sub-
rufa,	Sceloporus occidentalis,	and	Plestiodon egregius)	were	well	sep-
arated	both	from	each	other	and	from	the	other	taxa.	These	taxa	
differed	 from	 those	 ranked	 highest	 by	Mariadassou	 et	al.	 (2012)	

F IGURE  1 Results	of	Bayesian	analysis	of	the	JK2008	dataset	(50%	majority-	rule	consensus	tree),	with	clade	credibility	values	displayed	
at	nodes.	The	topology	was	the	same	as	that	recovered	by	Mariadassou	et	al.	(2012)	after	accounting	for	clade	collapse	procedures
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under	 maximum	 likelihood	 using	 the	 BSD	 (Shinisaurus crocodilus,	
Coleonyx variegatus,	and	Sceloporus occidentalis).	Four	of	the	eight	
ingroup	taxa	 identified	as	 influential	by	Mariadassou	et	al.	 (2012)	
were	 recovered	 in	 the	 top	 of	 the	 Bayesian	 ranking	 (Geocalamus 
acutus, Sceloporus occidentalis, Coleonyx variegatus,	and	Pelomedusa 
subrufa).

TII	 analysis	 of	 the	 Tullimonstrum	 datasets	 produced	 well-	
separated	 values	 (Figure	4a,b,	 lower),	 with	 a	 small	 number	 of	 ex-
treme	and	directionally	biased	outliers	that	comprised	no	more	than	
10%	of	each	taxon’s	TII	estimates	(Figure	4a,b,	upper).	Both	analyses	
placed	Tullimonstrum	 in	 the	 lower	quartile	of	 taxon	 influence	 (me-
dian	TIIMcCoy	=	3.38e−05;	median	TIISallan	=	3.07e−05)	 for	 all	 27	 in-
group	taxa.	Estimated	TII	values	were	lower	in	the	Sallan	et	al.	(2017)	
dataset	than	in	the	McCoy	et	al.	(2016)	dataset,	and	rankings	exhib-
ited	several	differences	 in	the	middle	and	tail	of	the	list.	However,	
the	 null	 hypothesis	 of	 dissimilarity	 in	 the	 rankings	 was	 rejected	
(rbo	=	0.932,	p	<	.0001).	Rogue	 taxon	analysis	did	not	 identify	 any	
taxa	to	be	pruned.	The	ranking	of	taxa	based	on	proportion	of	miss-
ing	values	 (“?”;	Figure	5)	was	unrelated	 to	 the	estimated	TII-	based	
ranks	(rbo	=	0.189;	p	=	.829).

4  | DISCUSSION

Inference	 of	 well-	separated	 TII	 values	 for	 two	 contrasting	 data	
types—molecular	data	and	morphological	data—and	for	differing	de-
grees	of	phylogenetic	signal	suggests	the	Bayesian-	based	approach	
presented	here	is	robust	and	applicable	for	ranking	taxa	with	differ-
ent	data	properties.	Additionally,	 the	stability	 in	rank	 location	of	a	
focal	taxon	(Tullimonstrum)	using	our	approach	suggests	the	method	
may	be	beneficial	for	contextualizing	hypotheses	of	the	importance	
of	individual	taxa	using	analytical	rank	results.

4.1 | Molecular dataset

The	difference	in	taxon	ranks	between	the	present	analysis	and	the	
original	ML	analysis	underscores	the	important	distinction	between	
the	 two	 methods.	 Although	 the	 two	 approaches	 exhibited	 some	
overlap	 in	 highly	 ranked	 taxa	 (Figure	3;	 Mariadassou	 et	al.,	 2012;	
Figures	4	and	5),	the	interquartile	ranges	around	the	median	TII	es-
timates	in	the	present	analysis	reveal	that	TII-	based	taxon	rankings	
are	 likely	 to	be	 significantly	 influenced	by	 topological	uncertainty.	

F IGURE  2 Results	of	Bayesian	analysis	of	the	McCoy	et	al.	Tullimonstrum	dataset	(50%	majority-	rule	consensus	tree),	with	clade	
credibility	values	displayed	at	nodes.	Differences	in	topology	between	this	analysis	and	the	results	of	McCoy	et	al.	are	described	in	the	text
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F IGURE  3 Results	of	taxon	influence	analysis	of	the	JK2008	dataset.	Rankings	exhibited	well-	separated	medians	and	non-	normally	
distributed	estimate	distributions,	with	an	apparent	relationship	between	interquartile	range	and	median	value	and	downward-	directed	
outliers
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This	 implication	 is	supported	by	the	apparent	disconnect	between	
the	 strongly	peaked	posterior	distribution,	 suggesting	 strong	phy-
logenetic	signal,	and	the	variably	wide	and	skewed	shapes	of	the	TII	
distributions	for	each	taxon	in	the	JK2008	dataset.	The	importance	
of	the	shape	of	TII	distributions	is	further	underscored	by	the	over-
lap	in	interquartile	range	of	the	three	highest	ranking	taxa	with	the	
medians	 of	 those	 taxa	 identified	 as	 highest	 rank	 by	Mariadassou	
et	al.	(2012).

Alternatively,	 such	 distributions	 may	 reflect	 an	 analytical	 ar-
tifact,	 such	 as	 model	 choice.	 Mariadassou	 et	al.	 (2012)	 observed	
some	differences	among	TII	estimates	and	rankings	when	different	
models	were	 employed	 on	 an	 amino	 acid	 dataset.	 Although	 there	
was	an	apparent	relationship	between	TII	median	and	 interquartile	
range	(Figure	3),	it	is	currently	unclear	whether	this	variation	is	itself	
a	 feature	of	 taxa	 that	may	 reflect	 some	degree	of	 rogue	behavior,	
or	whether	 it	 is	a	computational	artifact	 that	may	change	with	the	
number	of	TII	 sampling	 replicates,	or	with	MCMC	search	 intensity	
or	model	choice.	We	presented	100	iterations	as	a	starting	value	for	
resampling	 the	 TII	 estimates,	 but	more	may	 be	 necessary	 for	 cer-
tain	datasets.	However,	given	the	potential	of	Bayesian	methods	for	
obviating	model	 selection	 through	procedures	 like	 reversible-	jump	
MCMC	(Ronquist	et	al.,	2012),	which	is	not	applicable	in	commonly	
used	maximum	 likelihood	 phylogenetic	 inference	 programs,	model	
choice	may	not	affect	Bayesian	TII	estimates	and	rankings	as	strongly.

4.2 | Morphological dataset

The	ranking	of	Tullimonstrum	using	methods	like	taxon	influence	is	
significant	because	it	reframes	the	debate	in	the	recent	literature	

on	 the	 taxon	 (Clements	 et	al.,	 2016;	 McCoy	 et	al.,	 2016;	 Sallan	
et	al.,	2017)	from	a	conceptual	one	of	character	choice/significance	
and	taxon	sampling	to	an	explicitly	analytical	one	of	the	inferen-
tial	 importance	 of	 the	 taxon	 relative	 to	 other	 taxa.	 Specifically,	
based	on	the	present	results	(Figures	4	and	5),	we	conclude	that,	
relative	 to	 the	 selected	 taxa	 and	 characters,	Tullimonstrum does 
not	have	a	significant	effect	on	our	inference	of	the	shape	of	evo-
lutionary	 history;	 it	 is	 not	 inferentially	 important	 relative	 to	 the	
dataset.	The	hypothesis	that	Tullimonstrum	is	important,	implied	in	
the	original	paper	(McCoy	et	al.,	2016),	is	by	this	measure	rejected,	
a	 conclusion	 that	 is	 further	 supported	 by	 the	 robustness	 of	 the	
Tullimonstrum	 rank	position	 to	differences	 in	 the	coding	of	eight	
disputed	 character	 states	 between	 the	 McCoy	 et	al.	 and	 Sallan	
et	al.	datasets.

This	conclusion	stands	in	contrast	to	the	intuitive	idea	of	impor-
tance	as	suggested	by	the	many	apparently	unique	features	 in	the	
taxon,	notably	the	proboscis	and	eyestalks,	and	its	placement	within	
lampreys	in	parsimony	analysis	(McCoy	et	al.,	2016).	This	unexpected	
outcome	reveals	that	a	distinction	must	be	made	between	novelty	
and	 inference	when	contextualizing	new	 taxonomic	discoveries	or	
redescriptions.	Taxon	influence	analysis	makes	this	distinction	pos-
sible	by	explicitly	quantifying	one	element	(inferential	importance).

Additionally,	given	that	the	taxon	influence	measure	accounts	for	
taxon	and	character	sampling,	the	low	rank	inferred	for	Tullimonstrum 
may	be	an	artifact	of	sampling	design	incurred	by	adding	new	taxa	
to	existing	character	matrices	(see,	for	example,	[Davis,	Finarelli,	&	
Coates,	2012;	Zhu	et	al.,	2013;	Giles	et	al.,	2015]	and	[McCoy	et	al.,	
2016;	Morris	&	Caron,	2014;	Sansom,	Freedman,	Gabbott,	Aldridge,	
&	 Purnell,	 2010]).	 Future	 work	 may	 utilize	 taxon	 influence	 mea-
sures	to	address	the	idea	of	refinability	in	morphological	character	
datasets.

4.3 | Methodological implications and 
future directions

The	bounds	around	the	resampling	results	(Figures	3	and	4)	suggest	
that	 the	 finite	 sum	 approximation	 utilized	 in	 this	 study	 generates	
reproducible	rankings	of	taxon	influence	and	may	thus	be	an	effec-
tive	approximation	for	calculating	taxon	influence	based	on	the	SPR	
excess	 distance	measure,	 from	posterior	 distributions	 of	 trees	 for	
which	the	probabilities	were	calculated	using	the	standard	approach.	
The	 causes	 for	 the	existence	of	directional	 outliers	 in	 the	 studied	
datasets	(Figures	3	and	4)	is	currently	unclear,	but	may	be	an	artifact	
of	either	the	number	of	finite	sums,	or	of	an	interaction	between	the	
probabilities	of	trees	and	the	SPR	distances	between	them.

Although	 we	 have	 focused	 on	 several	 standard	 parametric	
models	 for	 nucleotide	 substitution	 and	morphological	 character	
transformation,	 other	 posterior	 distributions	 of	 trees	 are	 possi-
ble.	 It	may	be	useful	 to,	 for	example,	explore	 the	distribution	of	
parsimony-	score-	ranked	trees	under	the	Bayesian	approach	using	
the	TS97/no	common	mechanism	model	(Tuffley	&	Steel,	1997),	for	
comparison	with	the	results	of	parametric	models,	or	as	a	heuristic	
for	larger	datasets.	It	may	also	prove	worthwhile	to	calculate	tree	

F IGURE  5 Scatterplot	of	inferred	taxon	influence	values	versus	
the	proportion	of	missing	data	in	the	taxon	for	the	McCoy	et	al.	
dataset.	There	was	no	significant	relationship	between	influence	
value	and	proportion	of	missing	data	(R2 = .02; p	=	.19).	Ranking	
based	on	the	proportion	of	missing	data	was	unrelated	to	the	 
TII-	based	ranking	(rbo	=	0.189;	p	=	.829)
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posteriors	 using	 information-	theoretic	 measures	 (Larget,	 2013;	
Lewis	et	al.,	2016)	and	nonuniform	tree	priors,	which	may	reveal	a	
more	universal	metric	for	taxon	influence	assessment.	Finally,	al-
though	our	method	assesses	the	influence	of	individual	taxa	using	
a	 leave-	one-	out	 jackknifing	 approach	 as	 an	 intuitive	method	 for	
generating	 ranked	 lists	 of	 taxa	 based	 on	what	 is	 essentially	 the	
“main	effect”	of	each	taxon,	the	contributions	of	higher-	order	“in-
teraction”	effects,	such	as	pairwise-		or	clade-	based	influence,	have	
yet	to	be	addressed	by	the	taxon	influence	approach.	Approaches	
for	estimating	clade	stability	have	been	discussed	by	several	au-
thors,	including	Pol	and	Escapa	(2009),	for	reduced	positional	con-
gruence,	 and	Gatesy	 (2000),	 for	 linked	branch	 support.	 In	 these	
cases,	analyses	were	conducted	on	complete-	taxon	datasets	and	
sets	of	most	parsimonious	trees,	rather	than	via	a	taxon	jackknifing	
approach.	The	theory	for,	and	effect	of,	pairwise	or	higher-	order	
interactions	on	taxon	influence	values	is	currently	unclear.	Future	
work	expanding	the	taxon	influence	method	through	a	leave-	k-	out	
approach	may	be	beneficial,	although	direct	interpretation	of	the	
results	of	complex	multi-	taxon	interaction	may	be	difficult.
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