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abstract: Terrestrial mammals span seven orders of magnitude
in body size, ranging from the !2-g Etruscan pygmy shrew (Suncus
etruscus) to the 13,900-kg African elephant (Loxodonta africana). Al-
though body size profoundly affects the behavior, physiology, ecology,
and evolution of species, how investment in functional immune
defenses changes with body size across species is unknown. Here,
we (1) developed a novel 12-point dilution curve approach to describe
and compare antibacterial capacity against three bacterial species
among 1160 terrestrial species of mammals and (2) tested published
predictions about the scaling of immune defenses. Our study focused
on the safety factor hypothesis, which predicts that broad, early-acting
immune defenses should scale hypermetrically with body mass. How-
ever, our three statistical approaches demonstrated that antibacterial
activity in sera across mammals exhibits isometry; killing capacity
did not change with body size across species. Intriguingly, this result
indicates that the serum of a large mammal is less hospitable to bacte-
ria than would be predicted by its metabolic rates. In other words, if
metabolic rates underlie the rates of physiological reactions as pos-
tulated by the metabolic theory of ecology, large species should have
disproportionately lower antibacterial capacity than small species,
but they do not. These results have direct implications for effectively
modeling the evolution of immune defenses and identifying poten-
tial reservoir hosts of pathogens.
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Introduction

Hosts can be thought of as islands whose size impacts how
many parasites and microbes can colonize them (Kuris
et al. 1980). Bigger host species represent bigger islands,
leading parasite abundance (Kieft and Simmons 2015),
biomass (Poulin and George-Nascimento 2007), diversity
(Ezenwa 2004), size (Harrison 1915), size diversity (Poulin
2007), and prevalence (Ishtiaq et al. 2017) to increase with
the body size of host species. Large-bodied species also ap-
pear more susceptible to some parasite infections (Filion
et al. 2020). Furthermore, large body size is intimately con-
nected to the relative value of self-defense versus reproduc-
tion (Calder 1984), as most hosts reach large size via a long
life span (Harrison 2017; Downs et al. 2020). Altogether,
natural selection should favor the evolution of robust im-
mune systems in large hosts (Sheldon and Verhulst 1996;
Downs et al. 2014), yet despite a few theoretical (Langman
and Cohn 1987; Wiegel and Perelson 2004; Banerjee et al.
2017) and empirical (Lee 2006; Schoenle et al. 2018; Downs
et al. 2019) calls to investigate scaling of immune defenses,
very little work has yet considered whether and how im-
mune defenses scale across the full range of terrestrial
mammalian body sizes.
Body size has been a fruitful theoretical framework for

understanding animal design (Prothero 2015). Generally,
body size scaling relationships are modeled as power laws,
Y p aMb, with linear transformations, log10 Y p log10 a1
b log10 M, where Y is the focal trait,M is body mass, a is the
intercept, and b is the scaling factor. Four hypotheses make
predictions about the values of the scaling factors describ-
ing the relationship between immune defenses and body
mass: (1) protecton, (2) complexity of immunity, (3) rate
of metabolism, and (4) safety factor. Each was developed
f Chicago. All rights reserved. Published by The University of Chicago Press for
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with a type of immune defense inmind, and different com-
ponents of the multifaceted and complex immune system
likely exhibit different scaling patterns because of different
underlyingmechanisms and cost-benefit structures (Lee 2006;
Downs et al. 2020). These hypotheses are likely not mutually
exclusive. Still, as these hypotheses are largely untested and
have been broadly applied to immune defenses in the litera-
ture (Banerjee et al. 2017; Banerjee 2018; Downs et al. 2020;
Ruhs et al. 2020), we test predictions of each herein.
The protecton and complexity of immunity hypotheses

both predict that adaptive immune defenses should scale
in direct proportion to body size (i.e., isometrically), result-
ing in an isometric relationship (b p 0) for concentration-
based immune defenses (e.g., T and B cell concentrations;
Langman and Cohn 1987; Wiegel and Perelson 2004). The
fractal nature of the circulatory and lymphatic systems is
argued to predict isometry of defenses, generally, because
rates of parasite detection and delivery of defenses in-
ternally should be driven by transit of cells and proteins
through the vasculature (e.g., Wiegel and Perelson 2004;
Banerjee et al. 2017; Banerjee 2018). Although these frame-
works were developed for predicting the number of a sin-
gle clone of B cells necessary to detect an antigen in a host
and circulation time of a B cell (Langman and Cohn 1987;
Wiegel and Perelson 2004), they have been extended to
other types of induced, adaptive immune defenses (Banerjee
et al. 2017; Banerjee 2018).
By contrast, the rate of metabolism hypothesis predicts a

hypometric scaling factor for immune defenses (b ! 0) be-
cause biological activities are linked to basal metabolic rates
(Brown et al. 2004). As mass-specific basal metabolic rates
scale at b p 20:25 (i.e., themetabolic activity of single cells
of an animal decreases as the size of the species increases),
any immune defenses derived from cellular processes and
involving cell turnover and protein synthesis should scale
similarly (Dingli and Pacheco 2006). This hypothesis was
applied to and supported by counts of active hematopoietic
stem cell pools (Dingli and Pacheco 2006), the develop-
mental precursors to all immune cells (Kondo et al. 2003).
By extension, this hypothesis predicts that synthesis rates
of immune molecules are constrained by metabolic rate,
so the constitutive humoral concentration of immune de-
fenses should also scale with a scaling factor of 20.25.
Finally, the safety factor hypothesis makes predictions

about the scaling of rapid, broadly acting immune defenses
as a category. It invokes performance-safety relationships
from biophysics (Harrison 2017) and physiology (Dia-
mond 2002) and posits that large species should evolve dis-
proportionatelymore robust (i.e., hypermetric, b 1 0) dam-
age mitigation mechanisms than small ones (Harrison
2017; Downs et al. 2020). Immunologically, the safety fac-
tor hypothesis predicts that large hosts should evolve ex-
ceptionally robust constitutive, broadly acting defenses to
protect against the greater infection risks they experience
(Downs et al. 2020). Variants of the safety factor hypothesis
already exist in the literature, including Peto’s paradox for
cancer (Peto 1977) and the optimal defense theory (Shudo
and Iwasa 2001). Only recently, however, has direct empir-
ical evidence been provided for immune defenses, namely,
hypermetric scaling for both neutrophil concentrations in
mammals (b p 0:11; Downs et al. 2020) and heterophil
concentrations in birds (b p 0:19; Ruhs et al. 2020). Func-
tionally equivalent and classically considered thefirst line of
immunological defense (Soehnlein 2019), these cells engage
in direct antimicrobial activities and produce signals that
coordinate subsequent immune responses (Kolaczkowska
and Kubes 2013; Mayadas et al. 2014; Schat et al. 2014;
Rosales 2018).
Despite evidence for immune allometries for cell concen-

trations, a morphological trait of the immune system, how
and whether functional capacities of constitutive immune
defenses scale remain unclear. In other words, it is still ob-
scure whether hypermetric scaling of granulocyte concen-
trations represents greater immune protection in large ani-
mals or evidence that large animals must compensate for
lower per-granulocyte effectiveness by circulatingmore cells.
As per-gram metabolism scales hypometrically and cell
activities are predicted to scale like per-gram metabolism
(Kleiber 1975; Schmidt-Nielsen 1984), the average large-
animal leukocyte might be ineffective relative to a leukocyte
from a small species. Moreover, as selection tends to act on
integrated traits (Bennett and Huey 1990), scaling inference
based on functional capacities that affect host fitness (e.g.,
control of bacterial infections) will inherently be more in-
sightful than studies based solely on cell concentrations.
Our goals here were (i) to determine how sera-based an-

tibacterial defenses scaled with body size among terrestrial
mammals by estimating the scaling factor (b) and (ii) to test
which hypothesis best predicted the scaling factor for this
type of immunity. Antibacterial capacity of sera is an im-
portant determinant of host health and virulence for certain
bacterial pathogens (Taylor 1983), but it is measurable in a
standard way without species-specific reagents (French and
Neuman-Lee 2012). Briefly, antibacterial capacitymeasures
the capacity of circulating immune molecules (e.g., lyso-
zyme, mannan-binding protein, b-defensins) to engage
the complement cascade, primarily through the alternative
pathway, and cause bacteriolysis and bacteriostasis (i.e., the
inhibition of bacterial growth; Tieleman et al. 2005; French
et al. 2010;Demas et al. 2011). As part of the innate immune
system, the complement cascade is initiated quickly upon
detection ofmicrobes, and higher constitutive activity should
equate with faster detection (Dunkelberger and Song 2010;
Iwasaki and Medzhitov 2015).
To describe interspecific variation in this immune func-

tion in themost confound-freemanner possible,we compared
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the efficacy of sera dilutions of several independent rep-
licates from adults of mammalian species housed in zoos.
To provide generality to any scaling we observed, we quan-
tified the antibacterial capacity of sera of 1160 mammalian
species against three distinct bacteria: Escherichia coli, Sal-
monella enterica, and Micrococcus luteus. These bacteria
are common pathogens of many vertebrates (Mastroeni
et al. 2001), some portion of their natural infection time line
occurs in blood (Mittrücker andKaufmann 2000), and they
are controlled effectively by blood-borne immune defenses
(Taylor 1983). Importantly, as their last common evolu-
tionary ancestor was ancient, any consistency in allometries
should be more attributable to host immunity than parasite
evolutionary history.
To enablemeaningful comparisons across species—a sub-

stantial challenge for immunity studies—we characterized
antibacterial capacity in a dilution series instead of a single
dilution of sera (as is typically used; Demas et al. 2011;
French and Neuman-Lee 2012). The shapes of resultant ex
vivo antibacterial functions capture salient aspects of defense,
andwemade predictions about how each aspect should scale
under each scaling hypothesis (fig. 1). Meaningful antibacte-
rial parameters were (i) the maximum concentration of bac-
teria that serum could protect against as a measure of the
upper protective capacity against bacteria, (ii) the serum di-
lution at the point of most rapid change from protected to
vulnerable as a measure of the antibacterial capacity at a sin-
gle dilution, and (iii) the slope at this steepest part of the bac-
teriostatic function (fig. 1A). This last parameter could be a
proxy for how rapidly serum defenses could be recruited to
a bacterial replication event (Murphy et al. 2007) or capture
the pattern by which proteins and other molecules were
recruited combinatorially to control bacteria.
We predict that the safety factor hypothesis will best ex-

plain scaling of antibacterial capacity because it focuses on
broadly protective, early-acting immune defenses, a cate-
gory including antibacterial capacity. The safety factor
hypothesis predicts that large mammals will have dispro-
portionately greater maximal antibacterial capacity, greater
antibacterial capacity at a specific dilution, and amore rapid
shift from vulnerable to complete protection than small
species (fig. 1B). By contrast, the rate of metabolism hy-
pothesis predicts the opposite for large mammals relative
to small ones (fig. 1C), and the protecton and complexity
hypotheses predict that large mammals will have the same
antibacterial capacity as small species (fig. 1D).
Material and Methods

Samples

We used the simulations performed by Dingemanse and
Dochtermann (2013, fig. 1 therein) to guide our choice of
sample size. We obtained sera from healthy, zoo- and lab-
housed animals ranging in body size from 16 g to 3,600 kg,
covering the range of body sizes of extant terrestrial mam-
mals (fig. S1; Smith and Lyons 2011). Although samples
from zoo-housed animals comprised the vast majority of
our sample, we supplemented these with samples from
eight species of lab-housed animals to increase representa-
tion of the small-bodied species (!2 kg) in our analysis, as
these body sizes are rare for mammals in most zoos. Most
zoo samples were collected as part of routine wellness
checkups, whereas lab samples were collected at the termi-
nation of experiments; all animals from which samples
were taken were outwardly healthy. Although captivity it-
self can affect immune variation in animals (Buehler et al.
2008; Abolins et al. 2011; Viney et al. 2015), scaling factors
of leucocyte concentrations for wild (n p 117) and captive
(n p 386) birds were indistinguishable, suggesting that
captivity does not affect scaling relationships for some im-
mune defenses (Martin et al. 2022). Final sample sizes of
mammal specieswere 199, 186, and 164 for antibacterial ca-
pacity against Escherichia coli, Salmonella enterica, andMi-
crococcus luteus, respectively; we could not test all of the
samples against all of the bacterial species because of serum
volume constraints and because sample groups were not
completely nested. We assayed a mean of ≥4 samples per
species for each microbe (n p 1–41 replicates per species;
fig. S2). We also obtained 115 samples from a subset of
species representing the full range of bodymasses to ensure
that a single individual from a large or small species was
not biasing a species mean (table S1; fig. S3) and for a sup-
plemental analysis of how intraspecific scaling changed
with body size (i.e., intraspecific scaling; see “Supplemen-
tal Analyses” in the supplemental PDF).
Samples were collected in 2005–2019 and stored at

2807C to 2207C at the collection location until shipped
on dry ice to our research labs, where they were stored at
2807C until assays. All of the assays were performed within
24 h of thawing samples. Use of these samples was ap-
proved by the institutional animal care and use commit-
tees (IACUCs) of institutionswhere sampleswere obtained.
Samples were collected as part of routine veterinary exams
under the auspices of IACUCs or the like and were shared
after approval by the appropriate committee at each zoo.
Antibacterial Capacity

We measured antibacterial capacity against E. coli
(ATCC 8739), S. enterica (ATCC 13311), and M. luteus
(ATCC 4698) using an adaptation of the microbiocidal
assay developed by French and Neuman-Lee (2012). A full
description of the methods is in “Supplementary Methods”



290 The American Naturalist
of the supplemental PDF (summarized in table S2). Briefly,
we plated a 12-point dilution curve of each serum sam-
ple in triplicate on a round-bottomed 96-well plate. We also
plated a four-point dilution curve of commercially available
cow serum (Innovative Research, Novi, MI, IBV-Compl) in
Dulbecco’s phosphate buffered saline (PBS; Sigma-Aldrich
D8537) as our interassay control. Our final volume of each
serum dilution was 18 mL. We plated three replicates of
a 20-mL negative control of PBS and nine replicates of
an 18-mL positive control. We added 2 mL of a standard
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concentration (104 colony-forming units mL21) of bac-
teria to all wells except the negative controls. We incu-
bated plates for 30 min at 377C and then added 125 mL
of tryptic soy broth (BD 211825) to all wells and shook
plates for 1 min at 300 rpm. We measured baseline ab-
sorbance at 300 nm (Biotek Synergy HTX multimode
reader) to serve as an internal control before incubating
covered plates at 377C for 10–48 h, depending on the
bacteria. We measured final absorbance again at 300 nm
and calculated antibacterial capacity for each well as
(12(mean(sample end2sample baseline)=mean(positive
control start2 positive control end)))#100%. Mean in-
terassay and intra-assay variations were 9.0% and 1.9%,
respectively, and both were low. Assay protocols are avail-
able on Figshare (Schoenle et al. 2020).
Data Processing

All data processing and analyses were performed in the
statistical programming language R (R Core Team 2019)
using the code developed by Schoenle et al. (2022), Keith
et al. (2021), and Downs et al. (2021) and used by Claunch
et al. (2022). Code unique to this article is available in
the Dryad Digital Repository (https://doi.org/10.5061/dryad
.hx3ffbggz; Downs and Martin 2022).
We checked each sample dilution curve for laboratory

errors at the levels of the whole plate, replicates within
each dilution curve, and the individual dilution curve.
First, we subjectively determined whether positive con-
trols, negative controls, and interassay controls (i.e., com-
mercially purchased cow sera) demonstrated the expected
patterns (e.g., high optical density [OD] for positive con-
trol, the ODs for the most dilute cow sample and positive
controls were similar). We discarded a plate and reran
samples if the data did not follow the expected pattern.
Still, the individuals who performed this step were trained
in the criteria and checked regularly (details in Schoenle
et al. 2022). Second, we used an R function to identify
every instance where a replicate differed from both other
replicates independently by 10.1 OD, and if found, we re-
moved that replicate; if all three replicates differed from
each other by 10.1 OD, we removed all replicates (Schoenle
et al. 2022). Third, we visually examined each dilution
curve to check whether it followed the sigmoid shape
(Claunch et al. 2022) or a sigmoidal shape with decreased
antibacterial activity at a high concentration (M. luteus
only, indicated by preliminary analysis). If one of the dilu-
tions fell well above or below the rest of the curve, that
point was discarded (because we expect dilution curves to
demonstrate patterns of more antibacterial capacity to less
antibacterial capacity biologically [French and Neuman-
Lee 2012; Claunch et al. 2022], and zigzag patterns likely
indicated pipetting errors).
We then compiled the data and processed them through
a workflow we had developed and previously published
(Keith et al. 2021). First, we fitted five-parameter logistic
regression curves to each sample’s antibacterial capacity
curve (i.e., the shape of dilution curves across all 12 serum
concentrations) using the package nplr (Commo and Bot
2016; fig. 1A). Curves could be fitted only to values be-
tween zero and one, so percent inhibited values 1100 were
forced to a random value between 99 and 100, and values
!0 were forced to a random value between zero and one.
This approach restricted values to a range near maximal
and minimal antibacterial activity observed in other curves.
We log10 transformed sera dilutions and converted anti-
bacterial capacity from a percentage to a proportion to
aid in curve fitting. We extracted the curve parameters
from all curves (inflectiondilution, inflectionantibacterial capacity,
bottom asymptote, top asymptote, slope, asymmetric co-
efficient) to use in univariate and multivariate general lin-
ear models (fig. 1A). The coefficient of variability (CV)
of inflectiondilution for cow control curves was 4.6% for
E. coli assays and 10.3% for S. enterica assays. The CV
for M. luteus curves was high but consistently had the
expected curve pattern. We suspect this high CV occurred
because the middle dilution used in the M. luteus curve
(dilution p 0:0125) was near the inflection point (esti-
mated mean p 0:021) and curves with steep linear sec-
tions are very sensitive to small changes in dilutions; the
four-point cow curve was not as sensitive as the 12-point
sample curve. Slope and inflectiondilution were already on a
log10 scale. We added 1 to inflectionantibacterial capacity, bottom
asymptote, and top asymptote and then log10 transformed
them and body mass. All analyses were performed using
transformed data.
Data Analyses

Next, we identified scaling factors for the curve parameters
and thus for the overall curve shape. Properly estimating
scaling factors required models that allowed us to per-
form multivariate phylogenetic regressions that account
for within-species variation. Phylogenetic analyses account
for the nonindependence of species (Felsenstein 1985).
Importantly for our interest, failing to account for within-
species variation can generate inaccurate regression esti-
mates (Garamszegi and Møller 2010; Garamszegi 2014). We
employed three different modeling approaches to estimate
allometries (summary of each approach in table S3). We
interpreted qualitatively consistent results from all models
as robust support for those results indifferent to modeling
assumptions. For all approaches, we built independent
models for antibacterial capacity against each bacterial spe-
cies. The parameters of biological interest for our hypoth-
eses were inflectionantibacterial capacity, top asymptote, and slope
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(fig. 1A). We included the bottom asymptote, dilution at
the inflection point, and asymmetric coefficient in our sta-
tistical models because they inform our understanding of
the overall shape of antibacterial capacity curves.
Approach 1: Phylogenetic Covariance. We performed a
multivariate phylogenetic comparative analysis for anti-
bacterial capacity against each microbe using the R pack-
age Rphylopars (Goolsby et al. 2017, 2021; for code specific
to this analysis, see Downs et al. 2021). This approach
allowed us to calculate phylogenetic covariances of traits
among species while accounting for among-individual var-
iation (Goolsby et al. 2017). Although this approach did
not estimate scaling coefficients as they would be estimated
with a regression/linear model–based approach, it allowed
us to estimate phylogenetic signal of antibacterial capacity
and correlations among the antibacterial curve parameters
and between curve parameters and body mass within the
same model.
All antibacterial capacity curve parameters and body

mass were included as response variables in these models,
with one exception. Top asymptote was not included in the
model for antibacterial capacity against S. enterica because
it was highly correlated with inflectionantibacterial capacity (r p
0:998, threshold p 0:9; but see sensitivity analyses below).
We included phylogenetic effects from a tree we produced
by pruning the time-rooted tree created by Uyeda et al.
(2017) to our species list; we scaled tree height to one.
Models were fitted assuming a Brownian motion model
of evolution, and we estimated the percentage of variance
explained by phylogeny. We tested for phylogenetic sig-
nal for each trait using a likelihood ratio test (df p 1) by
comparing a Pagel’s l model against the null hypothesis
of a star phylogeny (i.e., phylogenetic independence of
residuals; l p 0; Pagel 1997, 1999).
Approach 2: Multivariate Mixed Models. We then built
multivariate linear mixed models using the R package
MCMCglmm (de Villemereuil and Nakagawa 2014). These
models assume that each species is an independent point,
and they allowed us to estimate b for all curve parameters
simultaneously while accounting for within-species vari-
ance by includingmultiple observations per species (Dinge-
manse and Dochtermann 2013). Being linear models, this
approach better paralleled the traditional approach of esti-
mating scaling factors from regression models (Sieg et al.
2009) while utilizing our individual-level data. However,
thesemodels didnot account for phylogeny because compu-
tation run times prohibited their inclusion in such a large
data set. (To illustrate, a single phylogenetic multivariate
MCMCglmm model for species averages from 150 species
[i.e., no within-species variation] took more than 1 month
to run on our institution’s computer cluster. Adding within-
species variation would have increased the running time
astronomically.)
We generated separate multivariate mixed models to

query body mass effects on antibacterial capacity, one for
each bacterial species. All six curve parameters were in-
cluded as response variables, and we allowed each param-
eter to have a different slope and intercept. Body mass was
included as a fixed effect, and species was incorporated as
a random effect. Species had independent intercepts and
slopes. These models were fitted using the MCMCglmm
package (Hadfield 2010; Hadfield and Nakagawa 2010;
de Villemereuil and Nakagawa 2014). All mixed models
were fitted using a weak inverse-gamma prior with shape
and scale parameters set to 1.002 for the random effect. De-
fault priors for all other fixed effects were used. Model
chains were run for 1:82#106 iterations, with a 420,000-
iteration burn-in and a 1,400-iteration thinning interval.
Results were robust across alternative priors, and chain
length was sufficient to yield negligible autocorrelation.
We extracted the slopes describing the species-level rela-
tionship between each parameter and body mass to test
our hypothesis about allometries.

Approach 3: Univariate Mixed Models. To test for effects
of mammalian phylogeny on antibacterial capacity in a
framework based on general linear models, we constructed
a separate phylogenetic univariate mixed model for each
biologically relevant curve parameter for each bacterium
using MCMCglmm (de Villemereuil and Nakagawa 2014).
We included body mass and all other curve parameters
as fixed effects (Hadfield 2010; Hadfield and Nakagawa
2010). The phylogenetic covariance matrix for this anal-
ysis was estimated using a phylogenetic tree constructed
with National Center for Biotechnology Information mo-
lecular data and phyloT (fig. S4; Letunic 2015). All mixed
models were fitted using a weak inverse-gamma prior with
shape and scale parameters set to 0.01 for the random ef-
fect of phylogenetic variance. Default priors for all other
fixed effects were used. Model chains were run for 7:8#
105 iterations, with a 180,000-iteration burn-in and a 600-
iteration thinning interval. We estimated Pagel’s l to mea-
sure howmuch of the total observed variationwas explained
by phylogeny (Housworth et al. 2004).

Sensitivity Analysis. We conducted additional sensitivity
analyses for the multivariate approaches (approaches 1 and
2). Briefly, we reperformed all multivariate analyses after
removing variables with a correlation of 10.8 (table S4).

Correlations among Antibacterial Capacity against Differ-
ent Microbes. We estimated correlations among species
means of antibacterial capacity curves against different
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bacterial species; we analyzed inflectionantibacterial capacity,
top asymptote, and slope in separate modeling exercises.
First, we calculated species means for each curve parame-
ter and compared multivariate covariance models with all
three curve parameters (e.g., slope of antibacterial capacity
against E coli, S. enterica, and M. luteus) using Rphylo-
pars. We used likelihood ratio tests to assess the presence
of a phylogenetic signal (as Pagel’s l) in model residuals
(Revell 2010). If phylogeny was informative, we performed
pairwise, phylogenetically informed covariance models in
Rphylopars and used cov2cor to calculate a Pearson corre-
lation. We performed traditional (nonphylogenetic) Pear-
son correlations in R if phylogeny was not informative.
Results

Overall, mammals exhibit a high diversity of antibacterial
curves (video S1), and results from all three modeling
approaches were consistent and supported isometric scal-
ing (b p 0) for almost all curve parameters of antibacterial
capacity against all three microbes. The one exception to
this pattern was the slope for antibacterial capacity against
Micrococcus luteus. In this one instance, all three modeling
approaches indicated hypometric scaling such that small
animals were disproportionally better able to control this
bacterium regarding this one parameter. Results were ro-
bust to the removal of the curve parameters with a 10.8
correlation (tables S4–S6).
Phylogenetic Covariance

Models built using Rphylopars estimated that the covari-
ance between body mass and all curve parameters was
close to zero and had 95% credible intervals (CIs) that
overlapped zero, except one (table 1). The covariance be-
tween slope and body mass for antibacterial capacity
against M. luteus was negative (211.0; 95% CI: 222.4 to
22.5). The l values provided evidence of phylogenetic sig-
nal in body mass and at least one curve parameter for
antibacterial capacity against all three microbes (table 2).
Phylogeny explained 192% of variation in body mass but
only !10% of the variation in the antibacterial capacity
curve parameters of biological relevance (table 2). Phyloge-
netic and phenotypic covariances can be found in tables S7
and S8, respectively. These models had slightly smaller
sample sizes because not all species were in the time-rooted
tree. Final sample sizes of species for these models were
191, 178, and 157 for antibacterial capacity against Esche-
richia coli, Salmonella enterica, andM. luteus, respectively.
Multivariate Mixed Effects Models

Multivariate models generally supported scaling factors of
zero for all curve parameters against E. coli, S. enterica, and
M. luteus, with two exceptions (table 3; fig. 2). The slope of
antibacterial curves against M. luteus was hypometric
(slope p 24.3; 95% CI: 27.65 to 20.79), and the asym-
metric coefficient scaled with a slope of 23.78 (95% CI:
25.60 to 20.91).
Phylogenetic Univariate Mixed Effects Models

Phylogenetic univariate models generally supported scal-
ing factors of zero for all microbes. The 95%CI for all curve
parameters for antibacterial capacity against E. coli, S. en-
terica, and M. luteus overlapped zero except for slope of
antibacterial capacity curves against M. luteus (table S9),
which scaled hypometrically (24.30; 95% CI: 28.34 to
20.30). Curve parameters were associated with each other
(tables S10–S12). Phylogeny explained 1%–18.2% of the
variation in antibacterial curve parameters (table S13).

Correlations

Speciesmeans of antibacterial capacity against different bac-
teria were not correlated except for top asymptote of curves
Table 1: Covariance (mean with 95% credible interval) between body mass and antibacterial capacity curve parameters
from phylogenetic covariance models estimated using Rphylopars in R
Antibacterial capacity
curve parameter
 Escherichia coli
 Salmonella enterica
2
2

Micrococcus luteus
Top asymptote
 2.62 (22.33 to .67)
 NAa
 .024 (2.11 to .06)

Slope
 839 (437 to 1,951)
 2.34 (212.2 to 12.4)
 11.0 (222.5 to 22.52)

Inflectionantibacterial capacity
 2.99 (22.61 to 0)
 .01 (2.17 to .37)
 2.02 (2.08 to .37)

Inflectiondilution
 212.2 (227.0 to 22.26)
 2.12 (2.82 to .44)
 2.29 (21.24 to .68)

Asymptote coefficient
 1.41 (22.33 to 5.17)
 2.11 (2.33 to .01)
 2.03 (2.37 to .17)

Bottom asymptote
 21.05 (22.64 to 2.21)
 2.01 (21.75 to .06)
 2.04 (27.71# 1084 to 2.13# 1045)
Note: Top asymptote, inflectionantibacterial capacity, and bottom asymptote were increased by 1 and log10 transformed. Body mass and slope were log10 transformed
before b estimation.

a Top asymptote was not included in the model for antibacterial capacity against S. enterica because it was highly correlated (r p 0:998) with in-
flectionantibacterial capacity. Both variables could not be included in the same model.
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against E. coli and S. enterica (table S14). Correlations for
inflectionantibacterial capacity (x2 ! 0:01, P p :98) and top as-
ymptote (x2 p 0:40, P p :53) were not informed by phy-
logeny, but slope correlations were (x2 p 15:9, P ! :01).
Strong Support for Isometric Patterns

Isometry of antibacterial capacity was well supported ex-
cept for the hypometric pattern for slope of antibacterial
capacity againstM. luteus in all analyses. A high slope value
indicated that an individual switched from maximal pro-
tection against anM. luteus infection to almost no protec-
tion against it with small changes in bacterial dose around
the inflection point of the antibacterial capacity curve.
Therefore, hypometric scaling of slope indicated that a
large mammal, relative to a small mammal, had a dispro-
portionally slower reduction in defensive capacity with
small changes in inoculation dose. In contrast, small and
large animals lost protection against E. coli and S. enterica
with the same change in inoculation dose.
Table 2: Values of l as a test of whether phylogeny was informative and estimates of the percentage of variation in antibacterial
curves against Escherichia coil, Salmonella enterica, and Micrococcus luteus explained by phylogeny from phylogenetic covariance
models estimated using Rphylopars in R
Antibacterial capacity
curve parameter
l (P)
 Variance explained (%)
E. coli
 S. enterica
 M. luteus
 E. coli
 S. enterica
 M. luteus
Body mass
 1 (!.01)
 1 (!.01)
 1 (!.01)
 96.6
 95.0
 92.1

Top asymptote
 .01 (1)
 NA
 .18 (.45)
 2.8
 NA
 6.5

Slope
 .97 (!.01)
 1.00 (.14)
 .44 (.02)
 9.8
 1.4
 9.0

Inflectionantibacterial capacity
 .08 (.99)
 .47 (.36)
 .22 (.25)
 3.6
 6.1
 8.1

Inflectiondilution
 1 (!.01)
 1 (!.01)
 1 (.02)
 6.9
 21.4
 4.8

Asymptote coefficient
 .75 (.38)
 .36 (.49)
 .20 (.87)
 1.2
 1.3
 2.1

Bottom asymptote
 .98 (!.001)
 .43 (.162)
 .01 (1)
 285.4
 4.1
 21.2
Note: Top asymptote, inflectionantibacterial capacity, and bottom asymptote were increased by 1 and log10 transformed. Body mass and slope were log10 transformed
before b estimation. Bold text indicates a significant phylogenetic signal.
Table 3: Estimated intercepts and scaling factors (mode with 95% credible interval) for curve parameters of antibacterial capacity
against Escherichia coil, Salmonella enterica, and Micrococcus luteus from multivariate mixed effects models
Antibacterial capacity
curve parameter
Intercept
 Scaling factor
b estimate
 Effective sample
 b estimate
 Effective sample
E. coli:

Inflectionantibacterial capacity
 .18 (.11 to .25)
 1,000
 .01 (2.01 to .02)
 1,124

Slope
 42.4 (26.8 to 57.9)
 1,000
 .98 (23.26 to 3.89)
 1,000

Top asymptote
 .27 (.20 to .34)
 1,102
 .01 (2.01 to .03)
 1,000

Inflectiondilution
 2.88 (21.33 to 2.52)
 1,000
 2.03 (2.14 to .04)
 1,000

Bottom asymptote
 .06 (.01 to .11)
 1,000
 0 (2.02 to .01)
 1,093

Asymmetric coefficient
 16.5 (6.7 to 25.1)
 1,000
 2.68 (22.54 to 1.50)
 1,000
S. enterica:

Inflectionantibacterial capacity
 .22 (.13 to .32)
 1,000
 0 (2.02 to .02)
 1,000

Slope
 34.6 (15.4 to 49.8)
 901.8
 2.38 (24.42 to 3.48)
 898.3

Top asymptote
 .31 (.21 to .41)
 1,000
 .01 (2.02 to .03)
 1,000

Inflectiondilution
 2.91 (21.30 to 2.56)
 886.9
 2.03 (2.10 to .06)
 887.4

Bottom asymptote
 .02 (2.05 to .09)
 1,225.3
 2.01 (2.02 to .01)
 1,220.6

Asymmetric coefficient
 24.5 (13.1 to 34.3)
 1,000
 23.78 (25.60 to 2.91)
 1,000
M. luteus:

Inflectionantibacterial capacity
 .18 (.06 to .33)
 1,000
 .01 (2.02 to .04)
 1,000

Slope
 33.2 (14.8 to 46.8)
 1,000
 24.31 (27.65 to 2.79)
 1,000

Top asymptote
 .26 (.10 to .41)
 1,000
 .02 (2.02 to .05)
 1,000

Inflectiondilution
 2.73 (22.03 to .57)
 1,000
 –.11 (2.40 to .18)
 1,000

Bottom asymptote
 .07 (2.03 to .28)
 1,000
 2.03 (2.07 to 0)
 1,112

Asymmetric coefficient
 4.8 (213.2 to 17.7)
 1,097
 1.97 (21.65 to 4.86)
 1,117
Note: Fixed effect is log10 body mass. Top asymptote, inflectionantibacterial capacity, and bottom asymptote were increased by 1 and log10 transformed. Body mass
and slope were log10 transformed before b estimation.
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A prediction of isometric scaling can be challenging to
test statistically because it corresponds to a mass-invariant
or intercept-onlymodel. A lack of a positive or negative rela-
tionship between antibacterial curve parameters and body
mass could indicate isometric scaling, or it could indicate
that one or both factors are so variable that patterns are hard
to discern. We used credible intervals (CIs) or confidence
intervals for antibacterial capacity curve parameters with
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Figure 2: Parameters of antibacterial capacity curves—instantaneous slope at the inflection point (A–C), maximal antibiotic capacity (D–F),
and antibiotic capacity at the inflection point (G–I)—against Escherichia coli (A, D, G), Salmonella enterica (B, E, H), and Micrococcus luteus
(C, F, I) against body mass. Each point represents a species mean, but analyses were performed on individual-level data.
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a priori predictions (e.g., inflectionantibacterial capacity, top as-
ymptote, slope) to distinguish between these alternatives.
The ranges of possible true values from the five-parameter
curves fitted to the antibacterial capacity curves (i.e., 12-
point dilution curves) for inflectionantibacterial capacity and top
asymptote were constrained between zero and one.We de-
fined a narrow 95% CI for these variables as 10% of this
range; we considered a 95% CI that overlapped zero and
had a range of 10.1 as support for isometric scaling. We
expected the range of the 95% CI to be greater for slopes
because instantaneous slopes of the five-parameter curves
fitted to the antibacterial capacity curves (i.e., 12-point di-
lution curves) have a wider range of possible values. The
theoretical limits of these estimates are 2∞ to ∞; we de-
fined narrow ranges as smaller than 10% of 95% of the
slope estimates (range of 95% of estimates: 0.142122; 10%
of this range was 12.1).
The 95% CIs of the antibacterial capacity parameters

with a priori predictions were narrow, supporting our in-
terpretation that the scaling factors of zero demonstrated
true isometry. Specifically, the 95% CI range estimates of
the covariance between curve parameters and body mass
from the phylogenetic covariance models were !0.02 for
inflectionantibacterial capacity and top asymptote and !0.2 for
slope (table 1). Similarly, the 95% CI range for scaling
factors derived frommultivariate or univariate mixed mod-
els was !0.07 for inflectionantibacterial capacity and top asymptote
and !8.04 for slope (tables 3, S10–S12). In contrast, the in-
traspecific allometries had wide confidence intervals around
scaling factor estimates (slope: range ≥ 17:6 wide, mean p
283) and demonstrated no patternwith body size, in general
(table S15).
Discussion

Our data provide robust evidence for isometric scaling of
serum antibacterial activity among terrestrial mammals
and little evidence of a phylogenetic signal. Within each
modeling framework, we present nine nonindependent
tests of the scaling relationship of antibacterial capacity
(3 curve parameters with a priori predictions # 3 mi-
crobes). Almost all tests supported the result that antibac-
terial capacity does not change with body size among
species. The one consistent exception was the slope for an-
tibacterial capacity against Micrococcus luteus, which was
hypometric. We speculate that Salmonella enterica and
Escherichia coli might pose higher risks to mammals than
M. luteus becauseM. luteus grows slowly and causes mod-
est disease in most hosts relative to the other two bacteria
(van der Poll and Opal 2008). Although phylogenetic sig-
nal was weak for many aspects of antibacterial capacity,
we caution against equating a lack of signal with a lack of
evolutionary effects (Blomberg and Garland 2002). Our
statistics were designed to test for phylogenetic covariances
in extant traits and account for the lack of independence of
species-level data (Felsenstein 1985), not for the coevolu-
tion of traits.
The species means of antibacterial capacity against dif-

ferent bacterial species were uncorrelated, except for max-
imal antibacterial capacity against E. coil and S. enterica.
This general pattern of noncorrelation was expected be-
cause bacterial species have different population dynamics
(van der Poll and Opal 2008) and complement-avoidance
strategies (Ramu et al. 2007; Abreu and Barbosa 2017). Ad-
ditionally, the complement system has three pathways:
the classical pathway activated by antibodies, the alternative
pathway activated by spontaneous hydrolysis of comple-
ment protein 3, and the lectin pathway activated by lectins
(Dunkelberger and Song 2010). Different pathways recog-
nize different bacteria, and complement’s relative importance
in eradicating these bacteria differs (French andNeuman-Lee
2012). For example, E coli initiates the classical pathway at
lesser concentrations and the alternative pathway at greater
concentrations (Li et al. 2008). In contrast, the lectin path-
way is activated by S. enterica (Gadjeva et al. 2001). We are
hesitant to pontificate on the mechanisms underpinning
differences in antibacterial capacity against different bacte-
rial species because they have been studied in depth in so
few host species.
Generally, isometric scaling supports the protecton and

complexity hypotheses. However, these results are some-
what surprising given that large species face a greater risk
of infection and greater fitness costs from infections than
small species (Downs et al. 2020), and we argue that a
higher constitutive antibacterial capacity will lead to faster
detection of a bacterial infection. We thus argue below
that it is premature to conclude why antibacterial activity
of blood scales isometrically. Our results leave open the
question of how large mammals can achieve the same
functional antibacterial capacity as small mammals, given
their disparities in metabolic rates (i.e., mass-specific met-
abolic rate scaling hypometrically, b p 20:25).
Isometric Scaling of Antimicrobial Activity Is Higher
Than Expected Given Metabolic Allometries

The isometry of antibacterial capacity is intriguing when
considered with the well-documented hypometric scaling
of mass-specific metabolic rates (Brown et al. 2004; Savage
et al. 2004) and the hypermetric scaling of concentrations
of some immune cell types (Downs et al. 2020). The met-
abolic theory of ecology posits that mass-specificmetabolic
rate constrains the synthesis of proteins, and indeed, RNA
transcriptomes across five species (Caenorhabditis elegans
to Danio rerio) scale hypometrically (b ! 0). Our assay
measured the functional capacity of complement and other
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circulating proteins to opsonize and lyse bacteria (Demas
et al. 2011; French and Neuman-Lee 2012). Hepatocytes
predominantly produce complement proteins inmammals
(Zhou et al. 2016; Lubbers et al. 2017), and mammalian
hepatocytes scale with a slope of20.18 (Porter and Brand
1995). As such, complement protein production per hepa-
tocyte should scale at 20.18. Liver mass also scales hypo-
metrically with a slope of 0.895 (Prothero 2015). Because
the hepatocyte size is isometric (Savage et al. 2007), large
mammals have fewer hepatocytes than small ones. It fol-
lows that antibacterial capacity should scale hypometri-
cally. A scaling factor of zero for a concentration-based an-
tibacterial capacity is high within this framework. In other
words, large mammals have much higher antibacterial ca-
pacity than expected by their metabolic rate alone.
An outstanding question is how large mammalian spe-

cies obtain the same antibacterial capacity as small ones if
they are constrained by metabolism. It could be that as
mammals become larger, complement-producing hepato-
cytes make up a larger portion of their livers, which would
result in a trade-off with other liver functions performed by
other hepatocytes. Alternatively, complement is a complex
system-level response, and the synthesis and release of new
complement proteins are regulated by anaphylatoxins pro-
duced during a complement response (Haas and van Strijp
2007). The system’s dynamics regulating the constitutive
concentrations of complement might facilitate the mainte-
nance of the same concentration of complement in large
and smallmammals regardless of production capacity. An-
tibacterial capacity is a measure of the constitutive capacity
of the complement response (Demas et al. 2011; French
andNeuman-Lee 2012). Even if hepatocytes produce com-
plement proteins more slowly in large mammals, the con-
centration of complement proteins that stops their produc-
tion might have the same set point across species, resulting
in isometric constitutive antibacterial capacity. These po-
tential mechanisms are speculative and are not a compre-
hensive list.
Isometric Scaling and the Protecton
and Complexity Hypotheses

Both the protecton and complexity hypotheses argue that
large and small animals need equal defenses against para-
sites, resulting in some immune responses scaling isomet-
rically (Langman and Cohn 1987; Wiegel and Perelson
2004; Banerjee and Moses 2010), and our results for an in-
nate immune response are generally consistent with this
prediction. However, both hypotheses were initially de-
veloped to predict how the number of and repertoire of
lymphocyte clones should scale with body size to protect
against foreign antigens (Langman and Cohn 1987;Wiegel
and Perelson 2004; Banerjee and Moses 2010), not to ex-
plain constitutive, innate immunity as studied here. We
might not expect predictions from these hypotheses to eas-
ily transfer to the complement system because it does not
have an analogy to B and T cell receptor diversity. Instead,
it evolved to be broadly responsive to a wide diversity of
foreign substances (Morgan 2000).
Additionally, the adaptive and innate immune systems

operate on different timescales (Murphy et al. 2007), and
assumptions about the distribution and timing of adaptive
immune responses are unlikely to hold for the fast-acting,
innate immune defenses, especially constitutive defenses.
Lymphocyte responses, the primary cellular components
of adaptive responses, require ~4 days to begin responding
to a challenge, whereas complement responses are close to
immediate (Murphy et al. 2007). The timing of these dy-
namics suggests different cost and benefit structures for
each. It follows that the underpinning logic of the complex-
ity hypothesis would need to be rederived to account for
dynamics of innate immune defense and make predictions
for broad, early-acting defenses that are part of the innate
immune system, such as antibacterial capacity.
Why Isometric Scaling?

Antibacterial capacity and neutrophil concentrations—the
other broadly effective constitutive line ofmammalian host
defense thus far studied in an allometric context (b p 0:11;
Downs et al. 2020)—have higher scaling factors than
expected by scaling ofmetabolic rates. The safety factor hy-
pothesis posits that these scaling relationships may have
evolved because, relative to small mammals, large mam-
mals (1) have a disproportionately higher exposure to
parasites and (2) have disproportionately larger discrepan-
cies in biological rates, including defensive ones, relative to
rates of invading microbes (Downs et al. 2020). Briefly,
large mammals have disproportionately higher exposure
risks to parasites because of their ecology and life histories.
Relative to small mammals, largemammals consumemore
food (Nagy 2001; Nunn et al. 2003), have larger home
ranges (Lindstedt et al. 1986; Kelt and Van Vuren 2001),
are exposed to more habitat with each unit of movement
(e.g., step; Schmidt-Nielsen 1984), and have higher abso-
lute exposure to parasites over their lifetimes because they
have longer life spans (Peters 1983; Calder 1984; Wiegel
and Perelson 2004) than small species. Additionally, para-
sites have an evolutionary advantage over most hosts be-
cause of differences in replication rates and generation
times (Downs et al. 2020). Furthermore, selection should
favor defenses with short time delays when parasites grow
rapidly, as bacterial (and viral) infections often do (Shudo
and Iwasa 2001).
Isometric scaling of constitutive antibacterial defenses

might be consistent with a broad version of the safety factor



298 The American Naturalist
hypothesis. Perhaps instead of predicting hypermetric
scaling of all forms of constitutive innate immunity
(Downs et al. 2020), the hypothesis should instead focus
on the counteracting pressures of parasites and metabolic
rate. While selection favors disproportionately greater rapid,
broadly acting immune defenses in large animals (Downs
et al. 2020), hypermetric scaling of defense may not always
evolve because synthesis of immunological molecules and
cellular reaction rates might be constrained by metabolic
rate (Brown et al. 2004; Savage et al. 2007). Thus, some
defenses might scale hypermetrically and some might scale
isometrically (or even hypometrically), depending on the
system-level regulation, cost-benefit structure, and the
mechanistic underpinnings of a defense. This idea is consis-
tent with the observation that large-bodied species appear
more susceptible to some parasite infections (Filion et al.
2020) and host disproportionately more parasites (Kieft
and Simmons 2015). This broad version of the safety fac-
tor hypothesis represents an integration of predictions of
the protecton, complexity, rate of metabolism, and narrow
safety factor hypotheses.
Conclusion

Our findings suggest that large and small species somehow
obtain the same level of protection against bacteria in their
blood, at least that mediated by sera. This pattern might
also exist in birds; a cross-species comparison of the bacte-
ricidal ability—an assay similar to ours but that measures
the complement-mediated antibacterial ability of a single
dilution of serumor plasma—of 12 bird species also revealed
isometric scaling (Tieleman et al. 2005). We are left wonder-
ing how large vertebrates maintain the same level of protec-
tion as small ones whenmetabolic rates scale hypometrically.
In this manner, a scaling approach revealed an aspect of the
design and energetics of the immune system that would not
have been revealed otherwise and provides evidence that
broad, comparative immunology may help reveal general
principles about the architecture of the immune system that
traditional ones do not (Martin et al. 2021).
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relations of these animals with our caribou and moose should receive due consideration.” Figured: “Wild European reindeer—female.” From
the review of Caton’s Summer in Norway (The American Naturalist, 1876, 10:39–42).


